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PREFACE

The topics discussed in this secondAero-Astro-
dynamics Research Reviewcover avariety of subjects.
Included are Aerodynamics, Communication Theory,
Facilities Research, Flight Evaluation, Instrumenta-
tion, Mathematics, and Orbit Theory. Other subjects
will be discussed in forthcoming reviews.

It is hoped that these reviews will be interesting

and helpful to other organizations engaged in space

flight research and related efforts. Criticisms of this
review and discussions concerning individual papers

with respective authors are invited.

E. D. Geissler

Director, Aero-Astrodynamics Laboratory
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NEWTONIAN AERODYNAMICS FOR GENERAL SURFACES

by

Willi H. Heybey

SUMMARY

In the hypersonic regime the Newtonian flow mod-

el, especially in its modified form, has been known

for some time to produce satisfactory results regard-

inga number of basic body shapes. It may reasonably

be expected to also work well with more complicated

body geometries as presented, e.g., by re-entry ve-

hicles. Because of its simplicity, the components of

the aerodynamic force and the location of the centroid

can be calculated in a relatively easy manner. The

mathematic s pertaining to the unmodified approach are

developed here for a general surface given in analytic

terms. Applications are matte to the elliptic cone,

first without, then with, an attached rear cylinder, to

a conoid of biparabolic cross sections, and to a drop-

like blunt body. The modification merely amounts to

the changing of a constant; it is described in the last

section where a survey of results as compared with

otherwise known data is also given.

INTRODU CTION

In recent times Newton's impact theory, espe-

cially in its modified form, has been proved a useful

tool in high Mach number flow. The results it yielded

in a number of test cases came surprisingly close to

observedor more exactly derived aerodynamical data,

such as pressure distributions, force components, and

shock angles at the nose of wedges or circular cones.

Since any spacevehicle, on returning to earth, will for

some time be embedded in hypersonic flow, the impact

flow approach is of considerable interest, offering as

it does a comparatively easymethod for force and mo-

ment computations. The pertaining mathematics have

been developed so far for basic surfaces only (e. g.,

flatplates, wedge)s._and _monds, spheres, right cir-

cular cones, capped circular cylinders). The agree-

ment found here with otherwise known data was often

excellent, indicating that the impact model of a moving

fluid in some measure depicts physical reality in the

hypersonic regime, perhaps by error cancellation,

while long ago it had to be discardedin hydrodynamics

and aerodynamics, both subsonic and moderately su-

personic. Itis not unreasonable to expect that, in hy-

personic s, impact theory will work satisfactorily with

other and more complicated surfaces such as are of-

fered by re-entry bodies. In thispaper the Newtonian

expressionswiU be derived for an unspecified general

surface which is allowed to be composite; however, the

stipulation is made that all its parts can be described

by analytic equations. The general method will be set

down in mathematical detail because it is fundamental.

In the four applications given, the treatment will be

largely confined to the communication of results; a

more elaborate account can be found in a forthcoming

Technical Memorandum.

IMPACT FLOW MATHEMATICS IN GENERAL

In the Newtonian flow concept, minute inelastic

particles all move in the same directionand at constant

speed. On contactWith a material object they transfer

their momentum component normal to the surface at

the point of impact. The force experienced by the body

is in the direction of the local interior normal since

the tangential component is carried off without effect

on the body. Surfaces withconcave parts might be hit

again by the deflected stream. Such occurrences are

notconsidered here. The simple Newtonian model ob-

viously does not consider forces acting on shielded

areas (shadow zones), nor does it contemplate the

formation of a shock. The results can often be im-

proved by a correction to the local pressure coeffi-

cient based on shock transition relations of which more

will be said at the end of the paper.

The physical concepts set forth above can be used

to calculate the pressure coefficient at an impact point;

it is found as

P - Poo
= -2 cos 2 _' , (1)

Cp q_

where p is the local pressure; P_o and q_ are the static

and dynamic pressures in the undisturbed flow (both

assumed as prescribed). The factor 2 characterizes

the simple theory and, in the modified form, will be

replaced by a different constant which introduces a

Mach number dependence not yet present here. The

angle a' is made by the flow direction and the interior

surface normal. In expression (i) its complement,

7r

the local angle of attack, _loc =
_' is oftenused.

This angle mustbe distinguished from the overall angle

of attack, _, madeby the flow directionanda line cho-

senwithin the body, usually the body's axis if such an



axis can be defined. The unit vector, v, in flow di-

rection will as a rule contain certain trigonometric

functions of c_ which cannot be obtained before a par-
ticular flow-body configuration has been introduced.

At this station, we therefore write, in general,

v = ozli+ oz2j+ o_3k , (2)

where i, j, k are unit vectors in the three axis direc-

tions of a rectangular (x, y, z) system of coordinates,

and the o_i must be considered as known quantities obey-
ing the relation

O_ 2 + 0_2 2 + _3 2 = I °

From the surface equation, taken at first as ana-

lytic in the variables x, y, z, the interior normal, n,
can be obtained at any point as

n = n l(x, y, z) i+ n2j+n3k , (3)

with

(nl 2 + n2 2 + 1132) = i .

Since cos _' is the scalar product of the two vec-

torsvandn, thelocal pressure coefficient (1) can now

be set into the'form

C = 2(v. _n) 2 , (4)
P

which links it immediately to the surface equation.

However, the general calculation of Cp requires the
means of the differential geometry of surfaces in which

symmetric and lucid relations are obtained when re-

placing the Cartesian surface equation by a pointwise

representation:

x = _l(a, r), y = ¢_(a,r), z = ¢_(_,r). (5)

The variables q and r will move within certain "natu-

ral" intervals for the triplets x, y, z to exactly em-

brace the surface points. There may be various equally
attractiveways inwhich to introduce cr and r. The sur-

face representation (5) offers the advantage that, on

assigningparametric values to cr or to r, it describes

two sets of surface curves (in terms of r or a) creat-

ing a net of curvilinear (not necessarily orthogonal)

coordinate lines bywhiehone may orient oneself on the
surface.

The components ni, now functions of a and "r, are
obtained as

i b(_j, Ck ) N.1

1 _:N 8(a, T) -+-N '

where (6)

N = If N12+N2 2 + N3 2 'l.

The indices i, j, k denote the cyclic sequences (t, 2,

3), (2, 3, 1), and (3, l, 2). The sign mustbe che-

sensuch that the surface normal points toward the in-

terior of the body; this can be done without difficulty

when the functions _i are known explicitly.

Since the elemental surface area may bewritten
as

dS = Ndcrd-r ,

the expression for the second order local elemental

force, which is in the direction (3), emerges as

d2P_ = 2q (v" n) 2N=_ndad_-

i d2X +j dzY + k d2Z ,
(7)

where X, Y, Z are the rectangular components of the

total force, _P. They can be found by integration over

the proper or- and T- intervals (which, if the surface

(5) is fully exposed to the flow, are the natural inter-

vals of these variables, otherwise narrower than

these). TheintegralsX, Y, Z can sometimes be eval-

uated in closed form; if not, we must resort to numer-
ical methods.

The drag force, being the component of P in the

directionv, is given by

D = (P • v) v = (o_IX + o_2Y + _3Z) _v = D__, (8)

while the lift force follows as

L = P- D =i(X- (riD) +j(Y-cr2D)

+ k(Z - _3D) (9)

with the absolute value L = _P_-_

Inadditionto the resulting force P there will be a

resulting moment of the elemental forces:

M__= J J t_ × d_'_P] d OdT , (i 0)

where

__r = i_l+j_+k¢_

is the lever arm from the origin to the point R on the

surface where the force element is attacking.

The moment balance condition,

[r x _P] = M , (lt)

permits the computation of the arm

r =ix +jy +kz



of theresultingforce. Fromequation(_), _ is not
uniquelydeterminablebecausethevectorproductmay
havethevalue__..Mwithinfinitelymanyvectors_r*. Me-
chanically,thisreflectsthemovabilityofaforcealong
its line of attack. Mathematically,one of the
r* - componentsremainsarbitrary. Anadditional
condition,

f(x", , x ) = 0, (12) '

may be introduced which, with symmetrical bodies,

usually follows from the desire to locate the point of

attack (centroid) on the body axis of which __ then is

a directed part.

INTEGRATION LIMITS

While the foregoing formulas are perfectly gen-

eral and directly applicable to any analytic surface (or

surface part), the determination and correct employ-

ment of shielded areas often require painstaking detail

work, especially if there are several such areas (which

may or may not overlap). The pr6blem remains sim-

ple when the shadow is a single point or an open line

(enclosed area zero), because then the reduction in

force is a zero quantity, and the natural a- and T- in-
tervals can still be used when integrating.

Two typesof shielded areas can be distinguished:

those created by the bulk of the body as it opposes it-

self to the stream, and those caused by a sharp edge

or rim existing on the surface (cast shadow).

With the first type, the flow vector touching the

surface is a true tangent so that it obeys the condition

(v. n) = 0. (13)

This relationship of a and _, ifwritten as T = (p(a) and

introduced into equation ( 5), defines the points of the

tangential shadow curve, st, in terms of cr. Along the

boundary s t the pressure coefficient is zero as follows

from expression (4). The integrationwill be perform-

ed first over _ since the function _(a) will call for at

least one limit of _ in terms of _. The area bounded

by s t may affect part of the natural a- interval; the

subsequent integration with respect to a must then be

carried out over a narrower interval. In simple case s,

a sol ution to equation ( 13 ) may not exist ( full exposure)

or may be found as a constant T = Tt(q_(a) = const ).

The integration scheme as sketched assumes that s t is

the only shadow boundary. Even thenthe ( a, _) -domain

must often be split in two or more areas over which

we will have to integrate separately (cf. fourth ex-

ample).

Along a sharp edge the flow vector as a rule is not

ina tangential plane, and condition (13) cannot apply.

Let the coordinates of the rim be written, e.g., in

terms of the variable _ :

x = fl(_), Yr = f2(_), z = f3([).r r

Part of the edge may not be exposed to the flow.

far as it is, the straight lines

(14)

As

x-x Y-Yr z-zr r- (15)
O_1 _2 _3

in flow direction define the surface of a shadow cylin-

der; their intersections withother portions of the sur-

face form a shadow boundary, Se, which often will co-

existwitha tangential shadow line. In such cases, the

proper handling of integration limits requires close

attendance (second example). If the rimis part of the

surface itself, as with truncated bodies, the variable

can be taken either as a or _ o

In the following illustrations, four applications of

the theory are given.

THE ELLIPTICAL CONE IN SYMMETRICAL SIM-

PLE IMPACT FLOW

With the tip of the cone at the origin and its axis

coinciding with the x-axis (Fig. t), its equation can

be written as

x = aa,

y = ba cos T ,

z = ca sin "r.

x

FIGURE 1. ELLIPTICAL CONE

I*y



The major and minor half axes of the elliptic cross

sections are all proportional to b and c, respectively

(b > c). Their lengths at the base are denoted by B

and C. Because the variable a counts the distance x

from the origin in terms of the unit a, its natural range
is

0 < a < a
= = h '

where x b = aa b is the length of the cone axis, and B =

bab, C = ca b . The variable _ is related to the angle

p indicated on Figure 1 through the equation

b tan p= c tan _- ,

so that the natural interval for r may be chosen as

The parametric curves a = const, are the cross-

sectionalellipses, andthe lines r = const. (p =const.)

are the cone's generating lines of which three are in-

dicated on Figure 1, the uppermost making the angle
w with the cone axis.

If the flow is parallel to the vertical (z,x) plane

arriving in that plane from below and behind, the con-

figuration is symmetric; the overall angle of attack,

taken at the origin, may be smaller than, equal to, or

larger than the angle w. The representative unit vec-

tor (2) becomes

v =i cos _ + k sin t_ . (16)

No shadow evidently iscaston the cone by its elliptical

base rim. But a tangential shadow boundary may exist.

Equation (13), here independent of a, defines a con-

stant T= r t as it assumes the form

sin r t = tan w cotg ce.

It hasno solutionwhen _ < w; the cone is then fully ex-

posed to the incident flow. With _ > w there are two

solutions in the first and second quadrants. They de-

fine a triangular area on the top of the cone enclosed

by the two generating lines lr = rtand _- = _ _- Tt. This
is the cone zone shielded from iinpact.

On introducing the numerical eccentricity

/ b2 _c 2_
,q -V- '

and the quantity

q = _z cos 2 w ,

the pressure coefficient (4) may be written as

C = 2 (cos _ sin w - sin t_ cos w sin T) 2
p I - q cos2r (17)

The pressure depends on r alone and, therefore, is

constant along the generating lines. R exhibits extrema

at tim boundaries of the r- domain, and may have a third

extremumwithin it. The pressure distribution around
7r

theright halfof a cross-sectional ellipse (- _ < v< +

) is shown on which is based = i0 °Figure 2, on co
t

(_ = 14 ° , q = 2/3 . The shadow boundary s t is at _'t _

45" (Cp=0), and a maximum of Cp exists at 7_ -45"

. _...*r_....--. _

J

FIGURE 2, PRESSURE DISTRIBUTION ON TWO

PARTIALLY IMPACTED CONES,

Forcomparison, the pressure distribution on the cir-

cular cone obtained by setting q = 0 (same w) is also

indicated; for such a cone an extremum inside the T-

domain never occurs. The pressures on it are gen-

erally smaller, as can be seen from expression ( 17).

The force components can be obtained in closed
form whether or not there is a shielded area. The ex-

pressions are relatively simple in the case _ < w

for which they will be written here. If the force co-

efficients refer to the area (TrBC) of the base ellipse,

one finds that

CX = 2 _1-_]l-q cos2wsin2_+ sin2wcos2_ll

Cy = 0

C z = 4 sin _ cos a cos2w
I -,,Ji -q

q

(18



The(known)expressionsfor thecircularconeevolve
onputtingq = 0. Drag and lift coefficients are

C D = C X cos o_+ C Z sin

C L =-C x sin _ + C Z cos_.

Apolar for the case cos•= 0.75, c= 0. 8 is supplied

in Figure 3, where of necessity _ __<w _ 41°20 ' since

otherwise expressions (18) do not apply. With a suf-

ficiently large, CL becomes negative.

CONE WITH CYLINDRICAL APPENDAGE

Th6 surface becomes composite if, e. g., a coaxial

elliptical cylinder is affixed to the cone base. Let its

cross-sectional semi-axes, B and C, be parallel to,

but neither large than nor necessarily proportional to,

B and C. In describing the cylindrical surface, the

earlier variables crand p can be used where, as before,

,9 will be linked to a more convenient variable T. The

natural ranges are

_b_. rr <fie,__ = -Tr<T< _T

q

.m:

m

R°.

Ito.

It

-.m

-.m

..ira

-,m

-.tt

-.1|

°,1|

lw

FIGURE 3. POLARFOR FULLY IMPACTED ELLIP-

TICAL CONE (cos co = 0.75, _ = 0.8).

The evaluationof the moment equation (11) can be

done with no restriction on o_. It shows that y* must

be zero. The lever arm of the resultant force P is

therefore in the (z, x) plane and can be chosen as part

of the x-axis, condition (12) takingon the simple form

z* = 0. The center of pressure is then found at

2 5,
_ = 3 COS2C0 ' y_" = z-".<= 0,

i. e., for small angles c0 at approximately 2/3 of the

cone length counted from the tip. With w _ 35 ° it al-

ready rests near the center of the base, and with still

larger values it moves outside the body (in the preced-

ing example x* = 273-_2Xb ) . The same formula holds

for circular cones. The term cos2a_ is often absent in

the literature when, in computing the moment (10),
the normal force elements alone are considered instead

of the total force elementsf

* The author, who at first had adopted this practice, is

indebted to Mr. E. Linsley for pointing out to him the

existence of an additional term he had obtained from

the chordwise forces acting on the circular cone.

whenaa is the total lengthofthecompositebody. The

variabl c _ is identical with T in the special case where

_:¢3=B: C.

With the symmetrical flow vector (16) it suffices
7r 7r

to study the right half of the cylinder ( -_ =<_<=_ ) .

The top part of it is bounded by the tangential shadow

line_ = 0 andis not impacted. In addition, the rim of

the cone's base will cast a shadow on the lower part.

The shadow curve s e will start out at some point, _ =

_rl, on the cylinder generatrix T = 0, then move down-

7f

ward to apoint, a = _2, _ = -_ on the nethermost gen-

eratrix which it may or may not reach, depending on

the cylinder's length. The curve s e is plotted sche-

matically in Figure 4 (together with s t) .

2

cylinder rear

expdsed area

s e

$-- cast shadow region --o

%

shadow line st, v _ 0

$-- shielded top of half-

cylinder

a t

rb cylinder root

cone base

T

2
t

0 (cone tip)

FIGURE 4. SHADOW GEOMETRY ON ATTACHED

CYLINDER

Its shape depends on B, C, B, C and the angle of at-

tack, o_. The length factor cri, is notnecessarily smal-

ler than a2, and the midcourse minimum may notexisto

If ac is not larger than the smallest of the values of



alongs_, the cylinder i S completely shielded from im-

pact an_ does not contribute to the forces (a trivial

example: a = 0). It can be shown that the total force

acting on the cylinder is P = Z. The integration is

relatively easy with a circular cylinder (radius R)

where the shadow curve s e is monotonically ascending
from cr = _2 to a = o 1. The outcome depends onwhether

or not the curve s e is cut off by the rear end of the

cylinder (length h). It is not if

c _ cotg _ (19)h>_ _

R

In thiscase, with fl= R/B, T = -_ (>__fl),

c z = -_ _sinS_ _ +cotg_ _-

+ /32 +15 _4160 + 0(fl_)_l " (20)

where the cone base again is the reference area. The

approximation should be good for almost any value
1

fl < 1. (With _ = _ the value of the bracket differs in

the fifth significant figure only from the exact value).

It is seen that the force decreaseswith decreasing cyl-

inder radius, angleofattack, and cylinder length. The

latter remains subject to the condition (19); other-

wise, expression (20) assumes a different form.

The circular cylinder is completely impact-free
if

h < (C-R) cotg_.

Evidently, complete shielding (at _ _ 0) is precluded

if R = C (the cylinder touching the minor axis vertices

of the base ellipse).

With elliptic cylinders, comparatively simple ex-

pressions emerge if _ = B (the cylinder touching the

major axis vertices of the base ellipse) ; the curve s e
is then monotonically descending from a = a z to a = a 1

= a b. Here again, complete shielding cannot occur.

The expression for C z simplifies considerably if with

C = 0 the cylinder degeneratesinto a rectangular plate

of length h (width 2B). On condition that
P

h > C cotg _,
p =

the entire shadow boundary s e finds room on the plate

which then contributes the force

Zp B q_ sin s q (4hp _rC cotg _)

> BCq_o sin2q (2- _) o

For comparison, the Z-component for a fully impacted

circular cone follows from the system (18) as

Z = BC qoo sin2_ cos 2 w

so that, if c_ is moderately small and the plate suffi-

ciently long, the lift of the composite body will he no-

ticeably larger than that of the cone alone. The drag

is less affected, although enlarged, too.

THE BIPARABOLIC CONOID

With an elliptical cone, the expressions for the

force components grow unpleasantly lengthy if a > w.

More concise formulations canbe presumably achieved

in the same flow if, in the (x,y) plane, a sharp edge

exists on the surface. For example, a body may be

constructedwhose cross sections parallel to the plane

x = 0 are bounded by two symmetric finite parabolic

areas facingeach other and intersecting in the ground

plane z = 0. If, with the upper sign holding for the

upper parabola, its equation is written as

y2 = 2a (xtanw_z),

the areas enclosed by the arcs will taper off toward a

tip at the origin. The body is then roughly similar to

thecone (Fig. 1), with which it will be compared. It

intersects with the vertical ( z, x) plane in two straight

lines which form the angle w with the x-axis, connect

the parabola vertices, and are the only straight lines

on the surface. The planform (in the plane z = 0) is

the rim parabola

y2 = 2ax tan w. (21)

The body is somewhat bulkier than a cone with its tri-

angular planform.

When using again the flow vector ( 16), examination

of the conditions for tangential and edge shadow lines

reveals rather simple impact geometries. If c_ < w

the whole of the curved surface is exposed to the stream,

its lower half alone if _ > ¢o. In the latter case there

is no cv - dependent shadow line T = T t as existsonthe

cone; it is replaced by the fixed body rim (21).

The force components emerge in a concise form

if they are written with the abbreviations

m s = Xb sin 2w

a l , (22)A = (m2 + 1) arctg m - m
m 3



where xb is the body length.

When _ < co, the force coefficients become

C x = 3A (sin2w cos2a + sin2a cos2w) 1

Cy 0 l
C Z 3A sin 2_ cos2w

(23)

4 a 2m 3

referring to the base area 3 cos3 w . One may com-

pare relations (23) to the corresponding expressions

(18) of an equivalent elliptical cone (same base area,

same w). As arule, C x for the conoid is found smal-

ler, and C Z is found largerthan for thecone° The lift

coefficient (another difference) is positive at least up

to w = 45 ° , i. e°, in all practical cases.

For all _ > w the shadow boundary (the rim) re-

mains immovable, and the drag and lift coefficients

assume a particularly compact form:

3 sin 3 (_ + w)
C D = - A2 sin w

3 sin2 (_ + w) cos (_ + w)
C =-- A

L 2 sin w

A comparisonwith the (much more complex) cone ex-

pressions has not been made.

The location of the center of pressure is independ-

ent of the angle of attack as it is with the cone. The

exact expression (not set down here) shows that, in

the limit w = 0,

. 3
X _ _ %5

2

which compares with _ = _ xb for the cone. When

w increases from co = 0 on, the center of pres-

sure at first moves slowly toward the tip, but after-

wards it recedes and is located at the base cross

section when w = 45 °. The overall trend is the same

as was found _with the cone.

A BLUNT-NOSED BODY

The drop-like surface sketched on Figure 5 the

right half of a Bernoulli leminiscate rotated about its

axis of symmetry. Its equation may be given as

x = a _ cos

y = a_sina cos

z = a_-c-gs-2_sin asinT

x

z

FIGURE 5. LEMNISCATIC SURFACE

where a is the body length. The angle cr is 45 ° at the

tip, 0 ° at the bluntend, so that it moves in the natural

interval

7F

O<a< _,_ =

while that of T is

0 < T < 27r ,

The curves a = const, and T = const, are the circles

of constant latitude and the meridians, respectively.

The flow is taken as parallel to the (x, y) plane

arriving from the lower right, so that

v = -i cos a + j sin a. (24)

Condition (13) for tangential incidence then assumes

the form

cos I- = cotg _ cotg3cr. (25)

This relationbetweenT and adefines the shadow bound-

ary s which isnot a simple parametric line _- = const
t

as it was with the cone. The curve s t can have two
distinct forms. Both appear as a kind of three-

dimensional loop that, near the blunt end, intersects

with the uppermost meridian at right angles and does

sowith the nethermostata point closer to the tip, pro-

vided that _ < 45 °. Otherwise, the loop is pointed at

the origin where it sets out in two meridional direc-

tions given, according to the s t -relation (25), by

cos T= - cotg _. Both typesof loopscrossover from

the body's upper to its lowerpartat the latitude circle

of largest radius (a = 30 °) . Figure 6 shows their

general course on the front side of the body (z > 0,

0< T<v). It is seen that an area near the blunt end

is impacted in the full natural T- interval. On inte-

grating over T, the upper limit is always T = 7r, while

the lower limit is either 1- = 0 or, on st, _-= arc cos
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(cotg _ cotg3cr), so that two different formsof the in-

tegral arise. Owing to the symmetric incidence, the

force component Z is found as zero. The remaining

two components cannot be given in explicit form, be-

cause, on integrating over a, one integrand contains
the awkward second lower limit of r.

Closed solutions are possible with _ = _/2 and

=0, where the st - curves degenerate into T = _/2
and a= _/6, respectively. Also, an approximation

can be made for small angles _; the force coefficients

then become

19 + O(ot2)cx = _ 2--0

21
Cy = _ _+0(a s),

I

ira 2, of the largest circleoflatitudeif the area,

serves as reference. As indicated by the sign of CX,

the chordwise forces push to the left. With _- 0,

19

CD =- - CX - 20 ' which value compares with C D = 1

for the half-sphere under like circumstances.

For small angles _,

found at

X ,_ O. 65a,

the center of pressure is

andis thus located near the blunt nose center of curv-

ature which is at

2
X = _ a°

The body shape roughly resomblea that of the Apol-

lo capsule; however, the latter's cap has less curva-

ture so that the centroid is likely to be moved toward

the left_

MODIFICATION OF THE NEWTONIAN C -

EXPRESSION P

With some bodies of plane or axial symmetry and

with the circular cylinder in symmetric cross-flow,

the Newtonian results have been shown to improve if

one sees to it that the pressure coefficient assumes

the exactvalue at the stagnation point where it is usu-
ally (because relatively easily) computed for _ = 0. It
may be expected that the expression thus gamea Will

also holdgood for smallangles of attack. At least one

corroboration of this surmise exists in the pressure

distributionaroundacircular cone (w = 10 °, a = 6.7 °)

where the modification amounts to a 4 percent increase

in values that are already satisfactory on the whole

when computed from shockless impact theory.

With the overall angle of attack zero, the angle

w, at the stagnation point, will be the local angle of

7r

attack so that w = _- c_:tag._ The modified formula
then will he written as

* cos2 _' * (X" n-)2
Cp = C - C (26)p sin 2 w p sin 2 co '

*

where Cp is the pressure coefficient at the stagnation

point. If _ = C_,stag , Cp = CD,_ as desired. The value

of C* can be calculated from ghock transition relations
P

and depends on the ratio of specific heats (T) in the

gas and on the Mach number, M_, of the undisturbed

flow.

In the case of blunt bodies (for which expression

(26) wasfirst suggested by Lester Lees) sin co = land

Cp =

2 1 +1 _)-]

T M2 M 2y M 2T - y + 1 -
_5 OC

(27)

With infinite Mach number ina diatomic gas, C = l. 84,

which figure then replaces the factor 2 of simple im-

pact theory. The values decrease with decreasing

Mach number (C* = 1.64 for M_o = 2), at first very
P

slowly; in the hypersonic region M o > 6 the figure 1.84
may be used throughout with a small error in the sec-

ond decimal place (T = 1.4). Very satisfactory re-

sults have been obtained regarding the sphere, ellip-

soid-and sphere-capped circular cylinders, and a

sphere blunted circular cone; theywere somewhat less

accurate with the cylinder in crossflow. In all cases,

however, they surpassed those obtained by another

method (Busemann's pressure relief approach).

Withplane symmetric bodies having a sharp lead-

ing edge to which the shock is attached, one may use

the zero incidence stagnation pressure of the wedge

which, although it cannot in general be written down

explicitly, assumes aconvenient form when the cosine

of the shock-body angle is sufficiently close to unity.



Expression(26)thenemergesas

C

P

I +_21 + J( 7+ 1)2+2 M 2OO4in2w'l(y-" -n)2"

(28)

If the Mach number approaches infinity, the bracket

approaches (T + l) ; the factor 2 is then replaced by

2.4 in a diatomic gas.

With T = I. 4 the formula (28) worked well and

better than Busemann's method for the wedge itself

and for a symmetrical pointed airfoil profile. With

the latter and 7 = 1.05, however, the modified New-

tonian formula gave pressure values that were con-

sistently too high and that were inferior to the pres-

sure relief approach (which resulted in figures some-

what too small).

The surface of a pointed body of revolution may,

near the tip, be approximated by thatof a circular cone

with the same half opening angle w. The latter's re-

lation to the angle a s of the attached shock is involved.
As a rule, numerical calculations are necessary, un-

less both w and asare small. In this case theapprox-

imate expression

C

p _ 4 (K2s_ 1) + 2 _K)2 T+ 1 2

w2 T + 1 (Ks (T- 1)+ K-K-Y -

S

(29)

is derived in the literature _'_, the relationship of K =

M w andK =M _ being given as
o¢ S oo S

I

K
s 7+1

K T+3
2

+ + K2._/\T +3/ T+3

(30)

* (7 + 1) (7 + 7)
IfM _oo C --_2 =2.08withT=l.4

oo ' p (T + 3)2

The excess over 2 is markedly less than in two dimen-

sions. For the circular cone itself and 7 = 1.405, the

approximation of Cp is very good up to w = 20 °, 30 ° ,

40 ° , if K > 2, > 3,= Oo. It breaksdownrapidlyfor

K < 2, the error amounting to -8 percent at K = 1 and

w = 5 °. Expression (30) offers an equally satisfactory

approximation of the ratio CfS/W in terms of K; with w

up to 10 °, it is close even with K = 1.

Acheckwasalso made with an ogive (w = 16.26 ° ,

Moo = 8, T = 1.4). The zero incidence meridional
pressure distributions as computed from Newton's

modified formula and from the (more exact) numerical

method of characteristics were practically identical.

For bodies like the elliptical cone andthe bipara-

bolic conoid which are not of rotationalsymmetry, the

modification of the factor 2 must be judged on the basi s

of the wedge and circular cone results. The flatter

these more irregular bodies become at a given value

of w, the more one may be inclined to cautiously up-

grade the relative low cone correction. The blunt lem-

niscatic body induces no uncertainty; the modified pres-

sure coefficient will here be smaller in accordance

with the general expression (27).

_'.-"See G. G. Chernyi, IntroductiontoHypersonic Flow,

translated and edited by R. F. Probstein, Academic

Press, New Yorkand London, 1961. Much of the fac-

tual informationassembled in the last section is taken

from this work.
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1l A UNIFIED TREATMENT OF TURBULENT FLUXES

IN MULTI-COMPONENT AND HOT FLOWS . -

by

F. R. Krause

George C. Marshall Space Flight Center

and

M. J. Fisher

Illinois Institute of Technology Research Institute

SUMMARY

A unified treatment of turbulent fluxes has been

developed to establish a basis for currently planned

experimental and analytical programs aimed at the

prediction of these fluxes in hot and multi-component

flows around launch vehictes._

The unified treatment is achieved by writing all

equations of motion in terms of a single conservation

law for fluid particles. This taw contains a free

parameter describing a velocity-dependent conserva-

tive property which can be carried by individual mole-

cules. The macroscopic volume concentrations and

the molecular fluxes of this property are then obtained

by an ensemble average over the velocity distribution

function of a single molecule. Thus, all properties

which appear in the usual equations of motion can be

calculated once the species concentration and the tem-

perature are known inside the fluid particle. Since all

of these canbe established by spectroscopic analysis,

the general conservation law is particularly adapted

to optical measurements.

The usual system of turbulent fluxes is found by

time-averaging the equations of motion. Applying the

same procedure to the general conservation law, one

finds that all turbulent fluxes are special cases of a

unified turbulent flux which is defined as the time co-

variance between the velocity fluctuation of a fluid

particle and the macroscopic volume concentxatio_-s

of conservative properties as observed inside the fluid

particle. In this way, it is easy to extend the usual

discussions of turbulent fluxes that have been given

for incompressible and/or one component compres-

sible flows to multi-component and hot flows.

In compressible flows, most turbulent fluxes are

estimated from the "driving" concentration gradient

and the spreading rate of the concentration profiles.

By writing the general conservation law as a diffusion

equation in a moving frame of reference, it is shown

that the same procedure can be used in multi-component

and hot flows onthe condition that (1) volume concen-

trations are used instead of mass fractions, (2) all

concentration profiles are self similar, and (3) all

temporal fluctuations are convected as an almost frozen

pattern and appear relatively small.

The above conditions are violated in regions where

the rms fluctuation levels are comparable to the mean

value, for instance, in the separation and reattachment

areas of transonic and supersonic shear layers. In

these areas we propose to estimate turbulent fluxes

directly from measured fluctuations instead of indi-

rectly using point injections and spreading rates.

Species concentrations and temperature can be, and

some information about velocity fluctuations mightbe,

obtained from local light absorption coefficients. A

suitable optical method is now being tested, and the

results will be given in the near future.

LIST OF SYMBOLS

Symbol Definition

(a) Coordinates

xk= (x,,x2,xa)

x = (x, y, z)

C = (_,n,_)

curvilinear coordinates

Cartesian point vector in space

fixed frame

Cartesian point vector in moving

frame

t _ time

T integration time or period of ob-

servation

ii



Symbol

V

M

e

u

C=c-u A

(b) Properties

m

T

k

h

P

P

n

N

F

Pc

5¢

LIST OF SYMBOLS (Cont'd)

Definition q

volume enclosed by control surface
0_

total mass enclosed by control

surface A

velocity of individual molecule in D

space fixed reference
F

velocity of fluid particle in space

fixed reference b

molecular velocities relative to

fluid particles M

molecular velocity relative to sur- Re

face element dA of a fluid phrticle

shear stress

molecular flux of internal energy

or heat flux

molecular exchange coefficients

turbulent exchange coefficients

diffusion coefficient

turbulence level

root mean square spread around

injection point streamline

Mach number

Reynolds number

(c) Operators (including superscripts)

mass of individual molecule

temperature or statistical param-

eter of a Boltzmann distribution

Boltzmann's constant and summa-

tion index d

dt
internal energy

8

specific internal energy (internal Dt

energy per unit mass)

div
specific enthalpy

pressure _

density

+

number density of molecules
/

number of molecules inside fluid

particle

velocity distribution function of a

single molecule

velocity dependent conservative

property carried by individual
molecules

volume concentration of _i

molecular flux of q5i

ensemble average over many reali-

zations of a single molecule or one

realization of many molecules

vector

rate of change in moving reference

rate of change in space fixed

reference

net flow rate or divergence in space

fixed and/or moving references

time average in space fixed

reference

time average in moving reference

fluctuation around time average

integral over closed control

surface

(d) Subscripts

i

j, k, 1, m

V

species "i"

summation indices

rigid control surface

12



LIST OF SYMBOLS (Concluded)

DEFINITION OF SYMBOLS

Symbol Definition

M continuously deformed control sur-

face enclosing the same mass

A element of control surface

stagnation and/or injection

_o jet centerline

a ambient flow

INTR ODUC TION

The development of modern launch vehicles pre-

sents the aerodynamic engineer with unusual problems

since the main emphasis is on structural integrity

rather than on minimum drag. Highly turbulent and

partially separated flows are produced by injections,

sharp edges and protubora_ees. In these areas, an

accurate knowledge of turbulent fluxes is needed. For

example, turbulent mass fluxes determine the fuel

mixing in combustion chambers and supersonic ram

jets, the dispersion of aurbine exhausts (afterburning),

retrorocket exhausts (communication blackout), and

cryogenic discharge (H 2 during stage separation).

Turbulent heat fluxes are responsible for the high heat

transfer rates at the heat shield and the flame deflec-

tor. Turbulent momentum fluxes (stresses) act as

powerful noise sources in jets (launch), separated

flows (supersonic flight), and oscillating shocks

(transonic flight). Additional applications are antici-

pated in air-augmented advanced engines, in super-

sonic combustors, and in thrust vector control.

The basic difficulty in analytical approaches is

that turbulent fluxes appear as additional unknowns in

the time-averaged equations of motion. They cannot

be calculated since the detailed information about tur-

bulent fluctuations was lost when time averaging the

equations. In principle, this information could be re-

tained by solving the time dependent equations of mo-

tion and by applying the time averaging procedures to

these solutions instead of the equations. However, a

review of numerical [ 1] and statistical [ 2] methods

reveals that it is unlikely that reliable flux estimates

can be obtained in spite of the tremendous numerical

effort.

The analytical problems have been avoided in the

"semi-empirical" approach where the time averaged

equations are made determinate by using empirical

relations between turbulent fluxes and driving gradi-
ents. Turbulent fluxes are then estimated from the

spreading rates of the concentration profiles. For

one-componentincompressible flows, a good summary

is given by Rotta [ 3]. The statistical interpretation of

these fluxes through the random walk of a single fluid

particle has been given by G. I. Taylor [4] for uni-

form flows and by G. K. Batchelor [ 5] for non-uniform

flows. Empirical relations for cold supersonic air

flows have been introduced by Gooderum, Wood and

Brevoort [ 6] and Ting and Libby [ 7].

A unified treatment of turbulent fluxes is now

given to establish (a) the conditions that have to be
met if the usual flux estimates from concentration

profiles and spreading rates is to be extended to hot

and multi-component flows and (b) an analytical basis

for experimental and analytical work in those areas

where these conditions are violated.

FLUID PARTICLES AND CONSERVATION LAWS

Turbulent fluxes describe the transport of mass,

heat and momentum which are produced by the unsteady

motion of fluid particles relative to a space-fixed con-

trol surface. These fluid particles are enclosed within

a small control surface which is continuously deformed

and travels with the mass average velocity u of the

enclosed molecules. Because fluid particles are hard

to envisage, they will be discussed in detail before

they are applied to turbulent flux calculations.

The concept of fluid particles is the main tool in

deriving the equations of motion. Qualitative discus-

sions of their surface characteristic are given by

Prandtl and Tietjens [ 8] and by Frenkiel [ 9]. Some

quantitative discussions of their surface characteris-

tics are given by Chapman and Cowling [10] and

Becker [ 11, 12]. Such surface elements will now be

combined to a closed control surface in order to de-

rive the macroscopic conservation laws for mass,

heat, and the momentum of translational motion.

Though conservation laws might be written for

any arbitrary control surface, a special choice is

necessary if one wants to retain the thermodynamic

and caloric equations of state besides the conservation

laws. The reason is that the equations of state relate

various ensemble averages which are based on uni-

versal velocity distributionfunctions. These functions

have been worked out by the general principles of

statistical mechanics [ 12]. They describe that frac-

tion of all molecules whose velocity is to be expected

in a chosen velocity interval. In a stagnant mixture

of ideal gases, a first approximation is given by the

Maxwellian distribution which shows that such distri-

bution will be different for each species.

13



3/2

Fi(u ) =

m.U2/2
1

e kT (i)

The ensemble average or macroscopic volume con-

centration of any property el(U) which is a function

of the velocity of individual molecules has therefor_e

to be established from the velocity distributions F i (U)

and the number densities n i belonging to species "i".

This average is

nLoo

% =nA(U--) ¢i( )ni Fi (USd 
_oO 1

where the overbar denotes the operator

(2)

-}-oo

():fff_ ( )r i(U_di-.
--¢¢ i

The equations of motion can use equation (2) in flows,

regardless of the fact that the universal velocity dis-

tributions have been derived in stagnant media only.

However, this requires a special moving observer

such that the motion of the surrounding molecules ap-

pears tohim like the thermal motion of a stagnant gas.

According to Chapman and Cowling, a gas is called

stagnant if the net mass flux through a surface element

dA is zero. The same result applies to the moving

observer if he travels with the mass average velocity

of the surrounding molecules. To describe the meas-

urements of such an imaginary observer, the following

velocity notation will be used:

Small letters describe the velocity components

relative to a fixed reference frame.

C

u A

U

= velocity of individual molecule

= velocity of surface element dA

= velocity of the center of gravity as determined

by the molecules inside the fluid particle

Capital letters describe the velocity relative to

moving observers. For each surface element,

one would find

K_ _'- uA, (3)

whereas the relative motion inside the fluid particle

is described by

U = c - u. (4)

All moving observers are thus attached to the center

of gravity of the surrounding fluid particles. It is well

known that their motion will not be influenced by the

internal forces between molecules [ 11]. Therefore,

the average number of crossing particles might be

calculated on the assumption that each molecule moves

along a straight line. During the time dt, the velocity

interval d C then contributes all particles which_flr_e

located inside an oblique cylinder of volume C dA

{Fig. 1). The number densityof these particular

particles is given by Z dC and the flux of the
property ¢ becomes i niFi(C)

j¢ = fff n i Vi(C ) q5i (C) C dC = nigbi(C ) C, (5)
_oo

where the overbar denotes the operator defined pre-

viously inequation (2). If the property q5i is set equal

to m i in order to represent the mass flux, then this

must vanish by definition of the fluid particle, and

equation (5) can be solved to calculate the observer

motion

+_ Pi
- i - fffu A=-nimi c = Z --F i (C) c dC.

P _co i P
(6)

Numberdensityof all particleswith
velocitiesbetweenCandC+ dC

All particlescrossingsurfaceelementdA
during timeintervaldt

FIGURE 1. ILLUSTRATION OF MACROSCOPIC

AVERAGES OF VOLUME CONCEN-

TRATIONS AND MOLECULAR FLUXES

After these preparations, it is possible to state

the general macroscopic conservation law which says

that the enclosed property fffv Po5 d _changes at a

rate which is balanced by the net molecular flux
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d - -d--t(fff p_ (_,t) d_)=- dA=
V

- ff ni _i(C) C dA.

A(t)

(7)

At this point it is assumed that the fluid particles can

be chosen so small that the macroscopic averages are

evenly, that is, linearly distributed. In this case, the

volume integral is directly proportional to the volume

concentration as measured in the center of gravity

= x;

1 d p_(_.t)_. 1 d -*V dt (fff d}5: v). (7a)
V

Within the same accuracy the area integral is related

to the divergence operator,

-- liml ff - -div ( ) = V--_, V ( ) dA, (8)

which once again has to be evaluated at the center of

gravity where__e relative_molecular velocities are

expressed by U instead of C.

We therefore get the conservation law of fluid

particles.

1 d -_

V dt (pcV) = - div niCi(U ) U. (9)

1 V

Inthe first term, the inverse mass density p = _ may

be substituted for the volume V since the mass inside

of a fluid particle is constant per definition of its sur-

face elements. This gives

d PC _

p_- ( P ) =- div ni¢ i (U) U. (10)

Both time derivative and divergence operator must be

applied to the moving observer. However, most ex-

periments are made with space-fixed probes. The

comparison between experiment and theory therefore

requires a space-fixed control surface.

We consider a small and rigid control surface

fixed around the position x. The rate of change at this

position is then given by the partial time derivative

_/0t and the volume V is constant, whereas the mass

M will vary in time. The right side of equation 7a

might therefore be approximated by 8pc/0t.

The definition of the surface flux, equation (5),

has to be changed. Obviously, all velocity distribu-

tionfunctions must still be evaluated inside fluid par-

ticles, since only then can one expect a universal

result. However, these functions might be communi-

cated to an imaginary observer sitting on the rigid

control surface. He will find that all molecules be-

!o_i_g to the dC velocity interval can cross his sur-

face element dA, during the time dt, which are inside

an o_blique cylinder aligned parallel to the velocity

C + uA. The flux through a space-fixed control sur-

face is therefore given by

Jfixed = ni Ci(C) (C + UA);
(11)

that is, the velocity u has tobe added under the diver-

gence operator. The conservation law for a space-
fixed control surface becomes

_P= - div n i ¢_i (U--*) (_+ u-*)Ot

( -)=- div n i_i (U) U+un ici(U)

=-div (n i Ci (U) U+pcu) ,

(12)

showing that the rate of volume concentration change

is equal to the molecular fluxes across the surface of

the moving fluid particles plus the flux of the macro-

scopic averages across the space-fixed control sur-
face.

The main assumption of the previous section was

that the fluid particles are sufficiently small such that

the ensemble averages u and PC are linearly distri-

buted inside the particle. In theory, ensemble averages

are obtained from a large number of flow realizations

or flashlight images. Since the velocity distribution

function used in this paper is based on a single mole-

cule, the fluid particle could be of molecular size.

However, experimental verification of the ensemble

averages requires that a "true" estimate of the en-

semble averages be found in only one realization.

Therefore, the number of statistical degrees of free-

dom, that is, the number of molecules, should be so

large that the standard deviation taken over all mole-

cules is still below the resolving power of the meas-

uring instrument. This conditions leads to a finite

lower limit on the size of fluid particles.

Let us consider a cube of side d which is filled

with a mixture of ideal gases at partial pressures Pi

and temperature T. The average number of enclosed

'T' molecules follows from Avogadros number

15



273 d 3 [cm3]. (13)
N.I = 2.69 • 1019 Pi [atm] T[oK ]

The actual number will fluctuate around this averag_

in a fashion that can be described by the normal

distribution. The corresponding mean square fLuctua-

tions of specific density Pi and internal energy E i, de-

rived in the kinetic theory of gases [11], are

(_Pi_ 2 3 (_AE i._ 2 1 "molecular fluctuy _,ons"

Assuming that the resolving power of the measuring

instrument stays below -p-- _- E___ <
Ap AE -- 104' the combina-

tion of equations (13) and (14) gives the following

lower limit of particle size:

d [cm] >- .69 p [arm] 273 _,Pi--'--]

(15)

3.4. 10 -3 (T/273)1/3

(p [ atm] ) 1/3

For partial pressures of 10 -3 atm and hot flows, this

is already in the mm range, and the thermodynamic

properties of these hot, low pressure flows may not

be evenly distributed inside a fluid particle of this

size. It follows that a "one shot" instrumentation may

be incompatible with the equations of motion•

THE EQUATIONS OF MOTION

The concept of fluid particles has the benefit that

the thermodynamic and caloric equations of state might

be tested in stagnant media. The vast amount of in-

form ationabout real and rarefied gas effects, chemi-

cal reactions, radiation, etc., that has been accumu-

lated in these stagnant media might thus be used in

reacting and radiating compressible flows, provided

that the range of thermodynamic properties is the

same for the flow and the stagnant medium. There-

fore, the conservationlaw, equation (10) or (12),does

summarize the complete equations of motion for multi-

component systems as listed by Byrd, Stewart and

Lightfoot [13] and provides in addition an accurate

definition of all ensemble averages involved.

The mass balance for species I can be derived by

setting

_0 for l _ i

_bi= m_Si_= _,mif°rl =i

(16)

The volume concentration follows from equation (2):

P_b = nimi6i_ = P_" (17)

The conservation law of fluid particles,

d (p_/)

P dt = - div j_, (18)

leads then to the definition of the mass flux

jl= nimiSi1 U = fff2 nimiOi_ U Fi(U ) dU
-oo i

+oo (19)

d_.

This flux does not vanish in multi-component flows,

since the average velocity of the "_.particles might

be different from the mass average. 7 .= 0 taken over

all species.

The momentum balance considers the translational

momentum of single molecules in a spaced-fixed ref-

erence frame:

_bi = m.1 c (20)

This leads to three conservation equations, one for

each component micl, 1 = 1, 2o 3. The volume con-

centration,

P_b = nimic_ = fff _. nimi (_ +u l) F i (_) dU"
_cO 1

+._

= Pi fff Fi d_
i _oo

=pu_

(21)

is then related to the divergence of a momentumflux

tensor

dui nimi ct_ g_ (_)
p = - div U = ,. _Xk , (22)

the components of which are customarily split into
normal stresses and shear stresses;

P6ki+_k_= PiCiUk = Pi (U +u_) U k

-boo

= fff Pi (u,+ u,) UkFi (U-')d_

fH --= E Pi U_U kF i (U) dU.
i __

(23)
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For a spherical symmetric velocity distribution, the

shear stresses _ = k vanish. It is the deviations from

the spherical symmetry that lead to "shearing ac-
tion."

The conservation of energy takes into account the

kinetic energy in the fixed coordinate system and the

total potential energy gi which is communicable and

stored in the various energy levels of the individual

molecules.

m. m.

¢i = mi 2

(24)

+m i (¢ +uU--_-Ei + m i (¢ +u_).

The volume concentration of this energy,

p_b=ni {Ei+m i (_+u_)} = niEi +-_ min---_l

= p(e +¢),

(25)

is the sum 6f the specific internal energy as seen by

the moving observer

e= =-- n i (-_ U-_+#i ) Fi(U) dU (26)
P _

and the kinetic energy p _ associated with the center

of gravity. Its change is related to the divergence of

two molecular fluxes:

p -_- (e +u-_/2) = - div n i {E i + m i (-_ +uU)}

(27)

=-divniE iU+pi (uU) U •

The first describes the transport of internal energy

or heat through the surface of the fluid particle

q= n.E. U= fff Z niE i _F i (U-") dU-*.
1 1

--oo 1

(28)

Once again, it will vanish for a spherical symmetric

velocity distribution.

The divergence ofthe second is customarily in-

terpreted as work of the pressuretensor:

div Pi (u U)U = div (Z PiutUltU
1

a

k % (f °iU Uk"

(29)

Thus, all equations of motion have been derived from

the conservation laws, equation (10) or (12). They

are valid as long as there are no external sources.

Thus, investigations of condensation effects, excita-

tion, ionization and self-generated radiation are

covered. However, species generating chemical re-

actions, momentum generating electromagnetic or

gravitational external force fields, and heat generation

by incident radiation are to be excluded.

TURBULENT FLUXES

The main characteristic of turbulent flows is the

rapid and random unsteady motion of fluid particles.

This paper considers stationary flows where all tem-

poral mean values like

* lim 1__t+T
u =T--_ T f u(_,t) dt

t

(30)

are independent against a translation in time.

u = u (x,y, z) (31)

Subclasses of stationary flows are customarily estab-

lished by considering the velocity fluctuations [ 14]:

u = u(x,y,z,t) - u (x,y,z). (32)

In turbulent flows, the turbulence level

(u )
F - (33)

I;*1
always exceeds 4 percent and values as high as 20

percent are not uncommon in free shear layers [ 15].

Besides, these fluctuations occur at very high fre-

quencies, mostly between 1000 and 50,000 cps depend-

ing on the mean velocity profile and the shear layer

thickness. Asaresult, a very high flux of mass, heat,

and momentum is to be expected.

The relation between turbulent fluxes and turbulent

fluctuations follows directly from equation (12). We

consider the flux of macroscopic averages p@ which
have been communicated from the passing fluid parti-

cles to the space-fixed control surface. This flux was

given as p@u. It will fluctuate in time since the en-
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semble averages p¢ andu are obtained from only one

flashlight image of many molecules (and/or realiza-

tions). Subsequent flashlight images might lead to

different mean values as has already been noted for

the velocity fluctuations. However, in most applica-

tions, one is interested only in the time average flux,

(Pq5 u) = p_ u + (p )*, (34)

which consists of two parts. The first describes the

transport of a hypothetical "time averaged" motion,

that is, the flux of the time average volume concen-

trations p$ whi_.ch are conveeted with the time average
mass velocity u *. This hypothetical flow is the only

one which can be measured by most instruments. The

second term (p¢ u')*ls called the "apparent turbulent
flux" or just turbulent flux. It describes the transport

of heat, mass, and momentum across a space-fixed

control surface by the temporal cross correlation

function between the velocity fluctuation u of a passing

fluid particle and the volume concentration fluctuation
f

P_b as observed inside this fluid particle. This is the
covariance between the convecting and convected prop-

erty as measured simultaneously at the same spot by

a space-fixed and by a moving observer.

, --n , lim 1

(O_bU) = T_o "_

T

f p' (x, t) -U_ .(x-*, t) dt
O

(35)

Equation (35) can be written for any velocity-dependeht

property _i that can be carried by individual molecules.

Possible choices include the mass m i, the translational

momentum mc, and the energy m i -_- + Pi as given in
equations (16) through (29).

The largest turbulent fluxes are to be expected

whenever (a) the velocity fluctuations or turbulence

level (_u) /gl is large, (b) the fluctuations of

,2 " I/2 • .
the volume concentration (p$)" are Large, ana
(c) both fluctuations are corirelated in time. Since all

volume concentrations are ensemble averages over the

same velocity distribution functions, all volume con-

centrations are correlated with each other. It follows

that a high correlation coefficient,

(p_ u')*
_ = r , (36)

4(p_2) * (u'_) *
<p

is to be expected for any thermodynamic property

once it has been found for a particular one. There-

fore, high heat and mass fluxes will occur simultan-

eously as soon as their turbulence level,

. - r_, (37)

0¢

ls large enough. Furthermore, a correlation between

heat fluctuations and momentum component fluctua-

tions is to be expected, since their volume concentra-

tions p_and p(e +_) arebased on the same densities

and velocities. Thus, a high turbulent shear stress

always indicates a high correlation coefficient r¢ as
well as high velocity fluctuations.

Comparing flows with the same level of turbulence,

one therefore has to expect the highest turbulent fluxes

in the region of high turbulent shear stresses.

The problem with turbulent fluxes is that they

cannot be calculated from measurable time averaged

properties. Sinee theturbulent flux is a time average,

any relation between turbulent fluxes and time averaged

properties has to be based on the time averaged equa-

tions of motion.

lim 1 IT 0p_ dt= lim p¢ (T) - P_b (0)
T --*°° T J" at T

O

0 = - div { n i ¢i (U)U* + (pC u)* },
(38)

which leads to one equation

(pC* _" - .... '¢u_div u" ) = - div {n i q_i(U) U"+ (p )* } (39)

• " "n " f
for eachvolumeconcentratlon p_ (1 cludlng o course
u;'). The molecular fluxes do depend only on the

universal velocity distribution functions and may be

related to the pq_ in a known manner. However, the
turbulent fluxes appeared as additional unknowns,

since the information about the individual fluctuations
, --*,

P_b and u has beenlost during the time averaging pro-
cedures. As a result, one has more unknowns than

equations, the system of equation 39 cannot be solved,

and a general relation between turbulent fluxes and

time average properties does not exist.

Obviously, the inform ation about turbulent fluctu-

ations is not lost, if one solves the time dependent

equations of motion as represented by equation (12).
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The turbulent fluxes may then be found by applying

the time averaging procedure (covariance, equation

(35)) to these now time-dependent solutions and not

to the differential equations. Such solutions can be

found numerically in a series of stepwise advances in

time solvLug an initial valuc problem at cach step

[17]. Modern digital computation facilitiesoffer stor-

age capacity and a computation speed which makes a

direct solution feasible in spite of the tremendous

numerical effort involved. Two-dimensional turbulent

flow fields are presently calculated by modifying a

computer program thatgives the viscoelastic behavior

of soils and rocks due to an atomic blast [18]. How-

ever, there is a fundamental limit on spatial resolu-

tion. The flow has to be uniform over distances larger

than the speed of sound multiplied by the time interval

between steps [I]. Thus, only low frequency fluctua-

tions can be obtained. High frequency and/or high

spatial resolution cannot be resolved inside file"fluid

particles" which constitute the numerical mesh.

Unfortunately, the high frequency fluctuations and

the high spatial resolution of cross correlation coef-

ficients are very important, since these fluctuations

determine the conversion of the turbulent kinetic energy

into heat [ 3]. The alternative to direct solutions is

then to establish some hopefully universal velocity
distribution functions for fluid particles. A universal

distribuiionhas been found for high temporal and spa-

tial frequencies (wave number) considering the spatial

Fourier transform of the two-point product mean
values between the velocity components of u' [2].

This distribution shows how the kinetic energyu'2/2 is

distributed in the wave number space. However, the

energy-bearing wave number components often reflect

specific mechanism of turbulence generation and are

often outside the range of the universal distribution.

It appears that the velocity fluctuations of fluid

particles cannot be described by auniversal distribu-

tion function that covers the complete wave number

range of interest. In separated flows, the mechanism

of turbulent energy transfer is not even a local effect

but does depend on the upstream conditions in an un-

known manner [ 13]. Besides, the statistical approach

has been applied to incompressible flows only. In

compressible flows and especially multi-component

flows, concentration and temperature fluctuations ap-

pear besides velocity fluctuations, and the associated

fluxes still cannot be predicted, even if a universal

Velocity distribution could be established.

EXCHANGE COEFFICIENTS

Analytical problems have been avoided in "semi-

empirical" approaches, where the missing relations
between turbulent fluxes and time average volume con-

centrations are provided from experiments. However,

with very few exceptions [ 20], these experiments did

not cross-correlate turbulent fluctuations, since the

simultaneous measurement of convecting and convected

properties proved to be too difficult. Rather, it was

assumed that the turbulent fluxes are proportional to

driving gradients m ana!o_- to molecular diffdsion.

The ratio between turbulent fluxes and driving

gradients is called the turbulent exchange coefficient

and has been estimated from the spreading rate of the

concentration profiles. For one-component incom-

pressible flows, a good summary of empirical data is

given by J. C. Rotta [ 3]. The statistical interpre-

tation through the random walk of a single fluid par-

ticle has been given for uniform flows by G. L Taylor

[ 4] and for non-uniform flows by Batchelor [ 5]. Em-

pirical relations for cold supersonic flows have been

introduced by H. H. Korst [22] and P. A. Libby [7].
The general conservation law is now rewritten in terms

of the Fickian diffusion equation to establish the condi-

tions that have to be met in multi-component and hot

flows, such that the turbulent fluxes might still be

estimated from the spreading rate of concentration

profiles.

We consider arigid frame of reference, the center

of which travels along a streamline of the time-

averaged motion. Every point-_inside this frame is

related to space-fixed Cartesian coordinates

_'= x- Xo(t ) (40)

as measured against the position

t

- - fuXo(t) = x ° + (t)dt (41)
O

of the origin _ = 0 traveling with the velocity

dxo(t) _,

_o (t) - dt - u (Xo(t)) (42)

along the streamline that passes through the reference

or injection point x u.

The general conservation law for a rigid and

fixed control surface has already beengiven in equation

(10). Repeating the same analysis for a small volume

element of our moving frame, we get

d _ _ _

d-_ P¢(_'t) = - div (ni¢i(U)U + Au pc), (43)

where Au denotes the relative motion of the fluid par-

ticles on the moving frame.

Au (_,t) = u(x,t) - Uo(t ). (44)
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At theorigin, _= 0,thisrelativevelocityis identical
withthevelocityfluctuationu' relativetothestream-
linethroughxo. A timeaverageof equation(43)will
thereforebeusedto obtainsomeinformationabout
turbulentfluxes. However,themovingframeis sub-
jectedtoaccelerationssuchthatthefluctuationAu is

no longer a stationary process, and the time average

t v = t+T

+ lim 1_ f pqb(_,t') dt' (45)Pq_ = T-" co T
t' t

is not independent against a translation in time

+ +---_

P_b = pq_ (_, t).
(46)

The time average of equation (43) therefore retains

a time derivative

+

rid_ + .... + (47)
dt PC (_' t) = - div ni_i(U)U + (Aup¢) .

Equation (47) can now be converted to the Fickian

diffusion equation,

-- + (48)_-d (p) = Dq_(t) div grad p; (_,t) = Dqs(t) Apq_,

on the condition that' both the molecular exchange co-

efficient,

+

niqb i (U) U

= _ _ _v¢(t)
°tv_b gradp + ' (49)

and the turbulent exchange coefficient,

--_÷

Avq_ - - grad pC = Avq)(t)'
(50)

are constant within the moving frame. A diffusion

coefficient D_b is then introduced as the sum of the two:

D_(t) = avM (t) +AvM(t ). (51)

Equation (48) has the particular solution

+ __ ¢(x o, to) -_2

Pqb (_'t) - 3/2 e ---
b3(t) 7r b2( t )

(52)

describing now how an injection of the conservative

property

+¢o

¢(x-" o, to)= fff
_oo

(53)

at time t o and space-fixed point x o spreads in the

moving frame. The length scale b(t) is directly pro-

portional to the root mean square spread as weighted

with the vohune concentration

fff , p; (-_,t)d_

- _ ( -co
3 b t) = (54)
2 +co

fff p_ (-_, t) d_
_co

Its value can then be used to calculate the diffusion

coefficient since the particular solution requires that

D_b(t) =2b_b( dt =4 dt
(55)

Equation (55) shows how to obtain the diffusion coef-

ficient from measured spreading rates. However,

b(t) isrelated to the density po as seen by the moving
-1.

observer, whereas most instrtiments are space-fixed;

that is, they measure the density p'_. The difference

between the two time averages is now established by
7-

communicating the results from the moving to the

fixed frame.

We consider the simplest of all cases where the

streamline of interest is straight.

_o(t) = (u* (X-'o(t)); 0,0) = (_t' 0, 0,) (56)

If at time t the moving cross section _ = 0 occupies

the position Xo(t) = x o + x(t), this cross section will

advance to the position x o + x(t') at the later time t'.

At this later time, the space-fixed cross section x is

then identical with the moving cross section _ =

- (x(t') + x(t)).

The instantaneous communication from the moving

to the fixed frame therefore gives

p_b(x,y,z,t') = p¢(_ = x(t)-x(t'); 17= Y-Yo' _= Z-Zo' t'),

(57)

and the difference between the time averages is equal

to

÷ +

P_b (x,y,z,t) -p_(¢ = 0, V, _, t)

lira I t'=t+T

= T-*_'T't f=t p¢(x(t)-x(t'); _, _, t')- p@(0, _, _, t') dr'. (58)

This difference becomes small if we assume that (a)

the communicated densities appear as small temporal

fluctuations to the space-fixed observer
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Jp_(x(t) - x(v) _, _, t') - p_(x(t) - x(t,); ,1, L t)I
+

O O (0, 71, _:, t)

<<1 (59)

and (b) that they are convected as a frozen pattern

p¢(x(t) -x(t');_; _; t);-_ pc(O, _, _,t').

The approximation

, +

P_0 (x,y-Y o, z-z o) = O_(O, rb _,t)

(60)

_(x-"o, t) (Y-Yo)2 + (Z'Zo)2

- 3/2 b3(x ) e b2(x)
(61)

is therefore valid in almost frozen patterns of turbu-

lence. Although the relative amplitude of the fluctua-

tions is small, their space gradients ap/brl and their

frequencies could be quite considerable.

The profiles of a two-dimensional jet or line

source follow by an integration over Zo.

* _ ¢ _Xo'Yo'Zo) (Y-Y°): (62)
O_b(x,y-YO ) = f O(x,Y,Z-Z o) dz o = bt(x)_ " e - bZ(x)

_ao

Shear layer profiles across the main region of both

axisymmetric and plane jets should therefore be self

similar and resemble the error curve e-(y/b)s The

scale factor b(x) and the spreading rate db/dx follow

most easily from the "half concentration width," as

indicated in Figure 2. Evaluating b(x) at several

FIGURE 2. VELOCITY PROFILES IN THE MAIN

REGION OF SUPERSONIC JETS

cross sections, the diffusion coefficient can then be

given as

1 .qL 1 _% dx _bb(x)_(X. Yo, Zo ) (ixD_)=_ dt =2b_b dx _'= (63)

The shear layer profiles across the initial portion of

ze jet are obtained by treating the jet as straight-line

sources parallel to the z direction. The contribution

of each line is then given by equation (62). The total

volume concentration follows by integrating over all
line sources

Yo "_ ,(Xo, t )

p;(x,y) =Yfo P_(x'y-Y°) dy° (1- erf--X---t (64)-0 4-_b(x) 2 b(x)'"

Accordingly, the shear layer profiles across the initial

regionof jets should resemble the error integral. The

spreading scale b(x) and the spreading rate db/dx

may then be obtained from a sample straight-line ap-

proximation as shown in Figure 3.

LO_ [ 1 • M." l 5 T_tT.-L rJr,-, i

0.8 - I 3-*N_2 l _ Mo,- LY. l.JTa-2. Y/to-8 _

J i _i * °i
2 ,o tI I

L2 0.8 0.4 0 0.4 0.8 1.2

FIGURE 3. VELOCITY PROFILES IN THE INI-

TIAL REGION OF SUPERSONIC

JETS

The diffusion equation (equation (48)) was ob-

tained from the general conservation law, and its

solutions should therefore he valid in multi-component

and hot flows, as long as the assumptions of turbulent

exchange coefficients, equations (49) and (50), and

almost frozen patterns of turbulence, equations (59)

and (60), are justified. The shear layer profiles of

all volume concentrations like species density, Pi,

stream density, pu, and internal energy, PCvTo, are
similar, and for eachproperty the diffusion coefficient

can be found by establishing the lateral scale factor

b(x) as outlined in Figure 2 and equation (63). These

diffusions, coefficients might then be multiplied with
grad P_b toobtainan estimate of the combined molecu-
lar and turbulent fluxes along the injection stream-

lines. At other positions, this estLmate will be less

accurate sin_.ce the relative velocity Au and the velocity
fluctuation u' might differ appreciably.

The present treatment of turbulent diffusion is

somewhat unusual, since it is based on volume con-

centrations instead of mass fractions. This is sug-

gested by Batchelor's treatment of turbulent diffusion

where the volume concentration p_ (-_, t) of a conser-
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vativepropertyis associatedwiththeprobabili__that
a singlefluid particlebedisplacedto position_. On
the otherhand,turbulentexchangecoefficientsare
customarilydefinedbythegradientsof massfractions
insteadof volumeconcentrations.It seemstherefore
necessarytodiscusswhyvolumeconcentrationshave
beenusedin this paper.

Mathematically,thechoiceof volumeconcentra-
tionP_b or mass fraction p¢p/p follows from the choice
of the control surface. Fluid particles conserve their

mass;therefore, the mass fraction p_Jp appears in

the conservation law, equation (10), and a diffusion

equation canbe obtained only by defining the exchange

coefficient with a mass fraction gradient.

_+

+ ni_bi(U) U

P °_M_b -- grad (pdp/p)+ " (65)

The coefficient C_Mqb which will be called molecular

diffusitity, unifies the standard definition of mass dif-

fusivity _Mi, thermal diffusivity (_Me,and dynamic

viscosity O_Mu.

The customary definition of turbulent exchange

coefficients is strictly analogous:

+ _ (p_ u')*

P AMq_ grad (pdp/p)* "
(66)

However, in this case the diffusion equation cannot be

obtained. To demonstrate, we choose a continuously

deformed control surface such that the net mass flux

of the time averaged motion is zero. The conserva-

tion law would then assume the form

w

in shear layers where the stream density pu varies

from stream tube to stream tube.

In view of these difficulties, the exchange coef-

ficient AMq _ is mostly used in Cartesian coordinates,

and the spreading angle db/dx, as well as the exchange

coefficients AM_ b, is obtained by curve-fitting meas-
_ 2/b2• _< . -y /

ured mass fractions pdp/p wlththe error curve e
or the error function. Some examples are given in

Figures 2 through 5, showing the velocity and stagnation

temperature profiles in the initial and main regions of

supersonic jets. However, as soon as the density

gradients are appreciable, the diffusion equation is

violated, and its general statistical interpretation by

the random walk of a single fluid particle does not

apply. It seems doubtful that the exchange coefficients

AMqs, which have been measured in simple flows, are

sufficiently general such that they might be extrapo-

lated to more complicated flow fields.
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L@

P dt = - div niq_ i (U) U + u' pq_ (67) 0., .__
n|

provided that the divergence operator and all velocity ,o+. _
components are expressed in eurvilinear coordinates

following the time-averaged motion streamlines. Time I

averaging equation (67) and assuming that p+ AMq _ is ,.....+
L7-- _,m[,,]

of function of time only leads to the equation I
a0

L2 0.| {t4

d(P_b/P)*

- AMq b div grad (pdp/p)*. (68)dt

This is not a diffusion equation since A M will depend
,%

on the space coordinates like l/p. Besides, the sys-

tem of curvilinear coordinates is not even orthogonal

I 1 I
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FIGURE 5. STAGNATION TEMPERATURE PRO-

FILES IN THE INITIAL REGION OF

SUPERSONIC JETS
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A comparison between the exchange coefficients

and has been made for the initial region of
AM_b Avqb

supersonic jets at constant stagnation temperature.

Since both coefficients are supposed to give the same

turbulent flux at the streamline, we have the general

Au A_LAon *

_,,. _, (69)

(p_) u=uAMqb (X, Yo, Zo)-

In isoenergetic and isobaric flows, densities and ve-

locities are related by

Poo azoo

p(u) - (70)
a' _T-I _"

o 2

For shear layers with linearly increasing thickness,
this leads to

do =1+ '_

- _ = i+ du I +.15M2.\ pu/ u=u°o/2

(71)

This ratio has beenused to convert the spreading rates

(db/dx) uOf measured velocity profiles to the spread-

ing rates (db/dx)p u that would have been measured

for stream density profiles. The results are plotted

on Figure 6. They indicate that the spreading rates

of the volume concentration pu are Mach number inde-

pendent. Apparently, the use of the incompressible

value, Apu(M_ o = 0) would have been an accurate ex-
trapolation to compressible flows.
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DESIRABLE FLUCTUATION MEASUREMENTS

The estimate of turbulent fluxes from volume con-

centration profiles and spreading rates has been quite

successful in incompressible free shear layers [23]
and the above unified treatment indicates that a simi-

lar success might he expected in multi-component and

hot free shear layers. However, the diffusion equation

always predicts self similar profiles and does not ac-

count for deviations from similarity. Infact, Batchelor

has shown that the moving observer will find uniform

exchange coefficients only if self similar profiles do

exist. In dissimilar flows, the whole diffusion con-

cept becomes questionable. Furthermore, in regions

of intense turbulent mixing, the turbulent fluctuations

are no longer small relative to their mean values and

the "pattern of turbulence" might decay sufficiently

rapid such that the assumption of almost frozen he-

havior becomes invalid. Therefore, the indirect

estimate of turbulent fluxes from measured spreading

rates is very questionable in the most interesting re-

gions with high turbulence levels, and direct fluctua-

tion measurements are very desirable.

Experimental evidence suggests that the highest

turbulence levels and the highest turbulent fluxes are

associated with flow separation [24], reattachment

[ 25] and oscillating shocks [ 26].

High wall pressure fluctuations in front of a

forward-facing step are shown on Figure 7. The static

pressure distribution indicates a large dead air re-

gion, and the root mean square pressure fluctuations

indicate high intensity peaks in the separation and re-

attachment areas. The peak values are twice as big
as those below the recirculated flow and one order of

magnitude bigger than those below the attached turbu-

lent boundary layer upstream.
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FIGURE 7. FLUCTUATION LEVELS IN SEPARA-

TION AND REATTACHMENT AREAS [25] .
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High fluxes have been observed in the reattaeh-

ment zone of turbulent free shear layers. At a free

stream Maeh number of 3.51 and Re/ft = 3.106, a

2.8-inch diameter cylinder swept forward at 45 de-

grees induced a wake pattern with a closed separation

bubble [27]. The highest heat transfer rates were

measured at the downstream end of the separation

bubble where the flow reattaches. At this point the

heat transfer increased to seven times the value that

has been measured in absence of the protruding cylin-

der. This is about thre_ times higher than all heat

transfer rates that were measured simultaneously at

the rest of flow field where the flow was steady as in-

dicated by a fine structure of the oil flow pattern.

Charwart made a similar observation on a rectangular

cavity [28]. The flow separated at the upstream edge,

and a free shear layer attached at the downstream re-

compression step of the cavity. Again the highest heat

transfer rates were measuredinthis area. They were

about twice as great as those measured in absence of

the cavity and about four times greater than the heat

transfer at the bottom of the cavity.

Though the above experimental evidence is very

limited, some qualitative considerations indicate that

it might be of a general nature. Let us consider a

turbulent flow where the molecular shear stresses and

heat fluxes are negligible relative to their turbulent

counterparts. ,The conservation law of fluid particles,

equation (10), thenshows that the stagnation enthalpy,

h =C T+ u_ +P u_
o p -_- = e +-- (72)p 2 '

will remain constant inside each particle. Therefore,

each fluctuation (u-_) ' of the particle speed is balanced

by a correspondent temperature change. Both fluc-

tuations are "in phase"; that is, they are correlated

and will produce a heat flux. Furthermore, the tem-

perature fluctuation indicates a related fluctuation of

the velocity distribution function, which in turn pro-

duces a correlated fluctuation of all other thermo-

dynamic state variables.

Consequently, we get turbulent fluxes that are

approximately proportional to the mean square velocity

fluctuations, regardless of whether there is a driving

gradient or not. In fact, the driving gradients seem

to be rather a consequence of the turbulent fluxes and

not the cause.

High fluxes are anticipated whenever the mean

square velocity is large. The question arises, "Where

are the highest velocity fluctuations to be expected?"

Obviously not in self similar shear layers since the

preservation of profile shapes seems to be a property

of almost frozen flows with relatively small fluctua-

tions. Rather the above experimental evidence leads

one to speculate that local regions of high subsonic "

flow adjacent to a dead air region might produce one

of the dominant instabilities. Such flows are produced

by certain portions of a supersonic shear layer during

a shock-induced separation or during the flow reversal

in a reattachment area. Their high instability has

been observed again and again during the operation of

transonic wind tunnels.

H. F. Vessey offered a simple physical model

that did explain the observations [29]. Consider a

local velocity decrease adjacent to the porous tunnel

wall. In subsonic flows, this produces a pressure

rise which will produce a lateral mass flux or outflow

in transonic flows. The following fluid particles are

expanded; this leads to a further decrease in velocity,

thereby amplifying the initial perturbation. In slightly

supersonic flows, the subsequent expansion will in-

crease the velocity, thereby stabilizing the original

perturbation. Thus, the instabilities are limited to a

narrow range of high subsonic local Mach numbers.

There is very little difference between the oscil-

lating outflow across a porous wall and the turbulent

mass transport across the time-average position of

an interface bounding a dead air region. Therefore,

the same mechanism might be responsible for the con-

centration of high turbulence levels in separation and

reattachment areas.

1°

2°

3.

4o
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ON QUASI-SLENDER BODY THEORY FOR OSCILLATING LOW ASPECT RATIO WINGS AND BODIES OF

REVOLUTION IN SUPERSONIC FLOW

by

M. F. Platzer

SUMMARY Symbol Definition

The paper presents a new formulation of quasi-

slender body theory for oscillating low aspect ratio

wings and bodies of revolution making use of concepts

introducedfirstbyK. Oswatitsch and F. Keune to ana-

lyze the steady flow field around low aspect ratio wings

at zero angle of attack.

It also presents a new elementary approach to

quasi-slender body theory for slowlyoscillatingbodies

of revolution showing the inter:relationship between the

methods of W. H. Dorrance and Adams-Sears.

M

m [n]

q ( ,_, 'r/)

s(x)

U

Free-stream Mach number

Source-moment of n-th order

Source Distribution

Dipole Distribution

Half span of wing

Free-stream velocity

The range of validity of quasi-slender body thdory

is examined by comparing it with an exact solution of

the linearized unsteady potential equation. Such a so-

lution is found for the infinitely long oscillating cylin-

der.

x, y, z

x, r, 0"

)_ (x, 0)

Cartesian coordinates Fig. 1

Cylindrical coordinates Fig. 2

Amplitude of oscillation

LIST OF SYMBOLS Aw(x,y) Downwash distribution

Symbol

a

c

E In] (x,y, z)

_:[o] (x)

Hi (1) = Jt +iY1

Hi (2) =Jl-iY1

i

Kl

k2y

Definition

_f(Y-T) 2 + z z

Free stream velocity of sound

Sum of source-moments of n-th

order over the cross-section

Sum of dipoles over the cross-

section

Hankel function of first kind and

and first order

Hankel function of second kind

and first order

Imaginary unit

Modified Besselfunction of sec-

ond kind and first order

1

22v (p_,)2

OL !

OL t!

cota

_b(x,y,z)

gbq(X,y, z)

¢R(x,y, z)

$(x,y,z)

CO

c(M + i)

09

c(t - M)

o)

c(M - l)

g-_-i

Wave-number of oscillation

Amplitude of pulsating wing

potential

Cross-flow potential of pul-

sating wing

Spatial influence of pulsating

wing

Amplitude of oscillating wing

potential
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LISTOF SYMBOLS (Cont'd)

Symbol

(_q(X,y, z)

_R(x,Y, z)

K2V

Definition

Cross-flow potential of oscil-

lating wing

Spatial influence of oscillating

wing

C cot2_

wU

c_cot2

i I i

--T + 3 +''" +_forv >-i

= 0 for v=O

Circular frequency

Dipole coordinates

I. INTRODUCTION

The problem of steady linearized subsonic, tran-

sonic, and supersonic flow over bodies of low aspect

ratio at small angle of attack has been treated by M.

Munk [i], H. S. Tsien [2], R. T. Jones [3], G. N.

Ward [4], M. J. Lighthill [5], and M. C. Adams-

W. R. Sears [ 6]. It is shown in these papers that the

disturbance flow pattern of slender bodies can be re-

garded as incompressible and two-dimensional in

planes normal to the main stream. The lift forces

then can be obtained by simple momentum consider-

ations (Munk - Jones slender body theory). An ex-
tension of these results to not-so-slender bodies was

obtained by M. C. Adams - W. R. Sears [6] using

Laplace or Fourier transform methods. Subsequently,

it was shown by I. E. Garrick [7] and J. W. Miles

[ 8] that the Munk-Jones hypothesis retains consider-

able usefulness also for harmonically oscillating slen-

der pointed wings and bodies. Thus, the velocity po-

tential of the transverse flow pattern satisfies in both

cases, steady and unsteady flow, Laplace's equation

in two dimensions. However, for unsteady flow the

conditionof sufficiently low reduced frequency must be

fulfilled in addition to the conditionofvery low slender-
ness ratio.

The present investigation is based upon the lin-

earized unsteady potential equation. The time depen _

dence is assumed to be purely harmonic. An approx-

imation theory based upon this equation "was first de-

veloped by F. Hjelte [9], M. Landahl [I01, G. Zar-

tarian - H. Ashley [ ill which extends the range of

validity of pure slender body theo__y. This method

generalizes the Adams - Sears theory for steady flow

[ 6] to oscillating flow; i.e., it uses Laplace or Four-
ier transform methods.

In [ 12] a general approximation theory for pul-

sating wings was developed extending F. Ketme's and

K. Oswatitsch's results for steady flow [13," 14] to

this unsteady flow case. It was seen that the leading

term of the expanded velocity potential consists of a

cress flow and a spatial influence. An equivalence

rule was found for configurations having the same to-

tal source strength in each cross section. The higher

order terms of the expanded velocity potential were

also shown to consist of a generalized cross flow and

a generalized spatial influence.

This paper shows that this basic buildup of the

flow field holds also for oscillating bodies. However,

the leading term now is given by a cross flow only,

namely, the Munk -'Jones potential The second ap-

proximation may be interpreted as consisting of a fur-

ther cross flow and a spatial influence. Quite analo-

gous to the spatial influence of pulsating low aspect

ratio bodies, this part of the flow potential does not

depend on the individual dipole distribution, but only

on the overall dipole strengthin a given cross section.

These general results are further substantiated

by developing a particularly simple theory for the case

of the slowly oscillating body of revolution which si-

multaneously shows the interrelationship between the

approaches of W. H. Dorrance [ t5] and Adams-Sears

[6].

Finally, this approximation theory is applied to

configurations for which exact solutions of the linear-

ized potential equation can be found. These exact so-

lutions are discussed in more detail.

IL APPROXIMATION THEORY FOR OSCILLATING

LOW ASPECT RATIO WINGS AND BODIES OF

REVOLUTION IN SUPERSONIC FLOW

The developments of Reference 12 for pulsating

wings can be used quite conveniently to formulate an

approximation theory also for oscillating flow. Intro-

ducing after Keune [ 14] higher order source moments

n
m In] (x,y,z,'o) = q(x, rl) • a = q(x,.q) [(y-rt) 2 *

n

+ zZ] 2 (2. i)
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and the sum of these source moments over the cross

section

.t

+s (x) n
E[n](x,y,z) = f q(x,7?)[(y-_) 2 + z2] _Zd_?, (2.2)

- s(x)

itwas statedin Reference i2 that each term in the se-

ries expansion of the pulsating wing potential consists

of across flow and a spatial influence. In this expan-

sion

_(x,y,z) = _[0](x,y,z) + _o[II](x,y,z) +

+... qfi2V](x,y,z) ..;, v =0,1,2 (2.3)

one has

_0[O](x,y, z)

¢ [II](x,y, z)

and so on,

= g0q[0](x,y,z) + CR[0](x) (2.3a)

=(pq[II](x,y,z) +(pR[II](x,y,z) (2.3b)

where

v

* J _(x,y,z,u) _n _y_) +z _

lad
v

- 2 + M+I fO E[2v](_'Y'Z) c(M+I) in (x- 0 d_

f0 _[ ]($,y,z} e -I

Considering now a pointed wing oscillating in su-

personic flow (Fig. 1), the velocity potential in this

case is given by

41z-O I - o_aa (Y-,e)' - _ a • sn

Therefore,

-',_.,-- -'.-5 sj _'''-'''''-_''-'_ .... .,-_..._.-,.,.-o.,. (2.5)
_/(x-t} z - _ a (y-_)' - _ •. sa

is an integral equation for the velocity potential on the

wing surface when the downwash distribution is known

or prescribed.

Generally valid exact solutions of hhis integral

equation have not been found. We could try to inte-

grate equation (2.5) numerically, but so far as is

known, no such approach has been developed. Instead,

only that integral equation which is based on the con-

Mach line

/
/

/
/

/
/_ y=tana • x

y--s (x)

/

/ x
0

\
\

(a) Plan form (xy-plane)

y=-s (x)

y--tan a • x

\
\

z Z (x,t)

X

(b) Section Y=Yl (xz-plane)

FIGURE 1. OSCILLATING LOW ASPECT RATIO

WING

cept of the pressure potential (see C. E. Watkins,

Three Dimensional Supersonic Theory, AGARD Man-

ualon Aeroelasticity, Vol. II, p. 3i) has been treated

numerically.

A decisive simplification of equation (2.4) results

only for the case of very low aspect ratio bodies (slen-

der body theory). The assumption of a plane, incom-

pressible cross-flow--orignally introduced by M_mk

[l] and R. T. Jones [3] -- holds true also for oscil-

lating flow (Garrick [7], Miles [8],} and leadsto a

surprisingly simple theory. An appropriate solution

of the Laplace equation for the oscillating low aspect

ratio wing is
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A Z
<p (X,y,z)- 27r

-s(x)

Because of the anti'symmetry condition,

A
¢ (x,y,z) =- $ (x,y,-z),

there can be no spatial influencel thus

A
CR(X) = 0. (2.8)

f (y_q)2 + z 2

(2.6)

(2.7)

Similarly, we have for the oscillating body of revolu-
tion

_(x) cos 0 . (2.9)A
(x,r,e) =. 2_rr

This slender body theory allows a rapid estima-

tionof the aerodynamic foreesonmissiles and low as-

pect ratiowings. Its extension to higher values of as-

pect ratio and reduced frequency has been achieved by

applying the Adams-Sears method to oscillating flow

[9, I0, ill. We will show here another formulation

which makes use of the concepts found for pulsating

flow and generalizes then_ to oscillating flow.

Replacing the double integral in equation 2.4

(where the distribution function is now proportional to

the velocity potential on the wing surface) by the ser-

ies expansion equation 2.3 for the pulsating wing and

performing the differentiation with respect to z leads

to a similar expansion for the oscillating wing,

^ _ [_[01 _[n](x,y,z)= _z (x,y,z)+ (x,y,z) +...

= _[0](x,y,z) + ¢[I1](x,y,z) + ... ] (2.10)

where the first term

+s(x) ^z
3[0] 2. f q (x. 11)- (y_7)_-+ zZ d_ (2. il)

-s(x)

is the well known slender body result (no spatial in-

fluence) and the second term

_[n](x,y,z) = _q[II](x,y,z) + _R[n](x,y,z) (2.12)

= o ,

- + c c{M-:) I_(_- 0 d_

consists again of a cross flow _'[H] (x,y,z)and a

spatial influence _%[H] (x,y,z). "_In equation (2.14)

_[0] (x) represents the sum of the dipole elements
JLb

over the cross section; thus,

+s(x)

_[01 Ix) = f _(x,R) d n . 12.15)

In a similar way, the following expansion for the os-

cillating body of revolution is obtained

A _q[O] q[I1](x, r,
(x, r,8) = (x,r,O) + _ _)

(2.16)

+ II1(x,r,O) ,

where

[0l (x,r,0) = _ cosO (2.17)
2vr

is again the well known slender body result, and the

second term reads

_[I1] (x,r,O) = q_q[II]lx, r,O)+ _R [H] (x,r,O) (2.18)

-_ _ _(Oe -i c(M_t) ln(x-Od _ (2.20)

- _ + (0 e -i c(M-l) _ (x-_) d

The result of equation (2. i2) for the oscillating

wing has previously been obtained by F. Hjelte [ 9]

using the Adams-Sears procedure [ 6]. The present

formulation shows that the concept of cross flow and

spatial influence---orginally introduced by K. Os-

watitsch [ 13] -- retains considerable usefulness also

for oscillating flow problems. Comparing the spatial

influences for the oscillating wing, equation (2. 14),

and the oscillating body of revolution, equation (2.20),

one recognizes that the flow in front of a given cross

section approaches that around a body of revolution.

The equivalent body of revolution, however, is now

defined as that body having the same total dipole

strength in all cross sections.
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IIL SPECIAL CASE: THE SLOWLY OSCILLATING

BODY OF REVOLUTION

The general results of the previous section can be

substantiated by developing a particularly simple theo-

ry for the case of the slowly oscillating body of revo-

lution which simultaneously shows the interrelation-

ship between the methodsof W. H. Dorrance [ i5] and

Adams-Sears [ 6].

Restricting his analysis to slow oscillations, W.

H. Dorrance expands the general •velocity potential of

the oscillating body of revolution for M > 1,

with respect to the frequency, and retains only terms

up to the first power of the frequency; thus,

Zartarianand Ashley [ li], on the other hand, ar-

rive at a theory for the oscillating body of revolution

by applying Fourier transform methods to the unsteady

potential equation.

We will show that the results of Zartarian and

Ashley [ ti] can beobtained from Dorrance's equation
( 3.2} in a quite elementary way [ 201. For thispurpose

we split equation (3.2) into a stationary part,

_stat.= cos0 • _ - -{7-,

where

_bO[0] = _ lnr + _ lncotc_ -
21r 21r

i j q,-_-_- 1_) fn [2(x-_)l d_ _ (3.5a)
0 '

g0 [H] - c°t2c_ r 2 q"_x)_n (rcot c_) -1]
81r

cot 2 a r 2 a $
8_r _ J q'(_)ln[2(x-_)] d_(3. Sb)

0

Insertingthis expansion into equation (3.3) and differ-

entiating with respect to r, we have

$ ._.___, _,,._,, .._.[_,._(,. __{). /: _ ._t__¢__ _]. (3.6)

A

For the unsteady part _'Unst. we first make use of the

relation valid for pointed bodies

a _ (0 (x-0 d_ a •

_r o _]_x_O__cot_ _. r_ 0 _](x-O'-cot_ • r_

D2 x-r cot c_ -I

= - cot _ a • r _ f0 _ (0 cosh cot_c_ • r d_ . (3.7)

This expression can again be approximated for small
r and we obtain for

Cua_a^ = _2, c°t_a" rcos0 '(x)_n _ + J0 x-_

(3.8)

Therefore, the velocity potential for the slowly oscil-

latingbody of revolution in supersonic flow can be writ-

ten a_

which represents the potential of the pointed body of

revolution at angle of attack, and into an unsteady part,

2, o _/(__O,__ot_. d • (3.4)

A

For _bStat" we canimmediatelymake useof F. Keane's

expansion for the body of revolution at zero angle of

attack [21]. This author shows that the velocity po-

tential can be expanded into

(3.5)
x-r cot a q(_) d_ = _b,[0] + _,[II] + ...'Y0@, (x, r) = - _ ',](x-O' - cot _ a • ra

4(ffi- O' -_o* _ a. r_ ],_(x.r..) . __, a_ - [____ ...... _,e,,l-su,z-e,id,

=' ") ]

,.,, [,..... .,]+ _-_-- r _o_ i q Ix) In _"" x + z- I .

Similar results can be obtained for subsonic flow [ 17].

Using equation (3.4), stability derivatives have been

calculated by G. Hoffman (Lockheed Missiles and

Space Co., Huntsville, Alabama) for aconvexand con-

cave parabolic ogive and a cone. This work shows the

dependence of the aerodynamic forces on Mach number,

pitch axis location, body shape and thickness ratio

[ 18]. The range of validity of this solution is checked

for the steady case by comparing it with J. L. Sims _
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linearized angle of attack method of characteristics

solution of the full rotational axisymmetric eqtmUon

of motion [ 19].

IV. COMPARISON WITH EXACT SOLUTIONS

Consider an infinitely long tube which performs a

harmonic oscillation in the plane 8 = 0 ( compare

Fig 2).

u

FIGURE 2. INFINITELY LONG OSCILLATING

CYLINDER

In cylindrical coordinates, the problem is de-

scribed by the equation

^ i ^ I ^ _iteM ^
(i-M2) _xx + _rr + r Cr + _ CO0 - z----6----c Cx +

W 2

+ (4.1)

and the deflection of the body axis is assumed to be

Z (x, 0) =Z0sin7x- cose .. (4.2)

In Ref. 12, we found, for the ptdsa!ingtube, equa-

tion (3. 5) assolution to the problem. Therefore, we

assume an analogous buildup of the potential function

also for the oscillating tube and write

_ (x,r,e)=_, eiTXeos 0 - P,(r)+_e-_XeoseP,(r) (4.3)

with _i and _ as dipole distributions which are to be

determined from the proper boundary condition.

After inserting the potential function equation (4. 3)

into equation (4. 1), we obtain the following solutions:

P3 (r)=Hl (2) E r fl _/(_+7) (ct'-7) 3 G'>7

= KiEr fl _ (_ + 7)(7- a') 3 a'<7

P4 (r) = Hl(2)[r fl _/ (_ - T) ((_'+ Y) _ _ > 7

and

Ps (r)ffi H{(2)[rcota_(_+7) (a"+7)

P4 (r) =Hl(2)Er cot a _/(_- 7) (a" - 7) 3
> 7

_"> T

= 4(V- (V-
7>-_

=- KIEr cot a _/17- _--)(u" - 71 _ T>_
_"> _{

14. 5)

A comparison with the approximation theory as

developedin Section 2 is easily achieved by series ex-

pansion of the exzct solution of equations (4. 4) and

(4.5).

E_ndl_ the Bessel functions,

(u)ffi-i--.u + _ +i C+In _)-_- ... (4.6a)

Hi `2) (u)=i __2_2 + u 2_L 2 " "} (4.6b)ira _-I--. C+ln ) _-_ ...

_+U U 11

K 1 (u) = u _ (C+ln _) -_ +... (4.6c)

and keeping only the leading term, we obtain the well

known slender body result, equation (2.9). Retention

of the second order terms in equaUons (4. 6) leads to

the quasi-slender body theory equaUons (2.18) to

(2.20) and results in a considerable improvement

over slenderbody theory [ 16]. A detaiIed comparative

study will be published soon.

Finally, we mention that a further exact solution

can be obtained also for the oscillating infinitely long

ribbonof constant span because chordwise integration

can be performed also in this case which, there-

fore, leads to asubstantially simplified integral equa-

tion [16].

CONCLUSIONS

A new formulation of quasi-slender body theory

foroscfllating low aspectratio wings and slender bod-

iesofrevolutionis presented. It shows that the "spa-

tial influence" of the wing depends only on the total di-

pole strengthineachcross section, and therefore, re-

duces this part of the flow field to the flow around its

equivalent body of revolution.
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In addition, a new elementary approach to quasi- 9.

slender body theory for slowly oscillating bodies of

revolution is derivedwhich shows at the same time the

interrelationship between Dorrance's solution [ i5] and

the extensionof the Adams-Sears theory to oscillating

bodies [ il]. 10.

The range of validity of quasi-slender body theory

is examined by comparing it with an exact solution of

the linearizedunsteady potential equation. Such a so-

lutionis found for the infinitely long oscillating cylin-

der.
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SUMMARY

A NEW PERFORMANCE CmTERI/DN FOR

LINEAR FILTERS WITH RANDOM INPUTS

by

Mario H. Rheinfurth

The paper introduces a new performance criterion
for linear statistical filters. Because of its physical

significance, the new performance criterion repre-

sents a welcome complement to Wiener'sperformance

criterion, and provides for greater flexibility in the

Resign of optimal filters. Application to several typ-

ical filter .problems reveals its remarkable mathe-

matical simplicity promoting an intuitive physical

understanding of its essential features. Another im-

portant advantage of the new performance criterion is

its applicability to problems in;colving periodic signals,

which affords an interesting comparison with other

available filter techniques. The full potential and

limitations of the new performance criterion, how-

ever, can only be judiciously assessed by further ex-

tensive studies that are presently going on.

I. INTRODUCTION

The development of the classical communication

theory is characterized by two basic concepts. One

is the description of signals as deterministic func-

tions using Fourier series or Fourier integrals, the
other their distortion-free transmission. The latter

is supposed to be accomplished by the ideal filter,

which avoids any amplitude or phase distortion of the

signal (Ref. 1). It is, however, evident that these

concepts can only represent idealizations of the real

situation encountered in praxis and that they would

have to be supplemented or discarded in the further

development of the communication theory. This is

exemplified in the fundamental paper of N. Wiener

(Ref. 2), which introduces new concepts'and ideas

leading to a new formulation of the basic problem of

communication theory.

Recognizing the fact that, as a rule, the trans-

mitted signals are not prescribed functions of time

but exhibit random features, we consequently regard
them as stochastic processes characterized by ade-

quate statistical quantities. A particularly useful

statistical description of these random processes is

afforded by the correlation functions and their equiv-

alent spectra. In addition, the principle of distortion-

free transmission was replaced by the more realistic

requirement of transmitting the signal with "smallest

possible error" or optimal. A precise definition of

this new concept is given by a judiciously chosenper-

formance criterion. Since its introduction by C. F.

Gauss, the "method of least squares" has proven to

be a very effective concept in many areas of the nat-

uralsciences. It is therefore not surprising that this

criterion played also a central role in the development

of modern statistical filter theory and was used by N.

Wiener as a criterion for the_quality" of reproducing

a message. Intuitively, this criterion avoids the oc-

currence of strong deviations from the useful signal.

Its mathematical advantage becomes apparent in the

statistical treatment of the signals, where its appli-

cation results in mathematical relations containing

only correlation functions of second order. Despite

these obvious advantages, itis well knownthat in cer-

tain practical situations the mean-square error crite-

rion exhibits deficiencies. Therefore, the question

arises quite often whether or not other performance

criteria, which avoid these deficiencies, could be in-

troduced. Searching for such a new performance cri-

terion, we must focus attention not only on the physical

significance but also on mathematical simplicity in

the theory development.

This paper establishes such a new performance

criterion and discusses its similarities and differ-

ences with respect to the mean-square error crite-

rion. To do this, some new concepts are needed,

which are introduced and defined in the following sec-

tion.

II. THE DESCRIPTION OF RANDOM PROCESSES

(1) Correlation Functions

A random process is defined as an ensemble

of time functions of infinite duration, whose properties

can be characterized only by statistical concepts.

Particularly important statistical characteristics

of these random processes are the correlation func-

tions that represent generalizations of the correlation

coefficients widely employed in elementary statistics.
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In the subsequentanalysis, theautocorrelation
functionshall bedefinedas the ensembleaverage

rxx(t, T) lira t _t14..= N-_o N xk(t) xk(t + T) (2.1)

= <Xk(t ) xk(t+T)>,

and the cross-correlation function as the ensemble

average

N

rxy(t,T) = lira 1N_oo _ _ Xk(t) Yklt+T) (2.2)
k=l

= <xk(t ) Yk(t+_)> ,

where xk (t) and Yk (t) represent member functions

of two different ensembles of random time functions.

Taese correlation functions axe, in general, functions

of two independent variables (t, T), where t shall be

referred to as reference time and r as correlation
time.

x k(t)

Yk(t)

FIGURE I. DEFINITION OF CORRELATION

FUNCTIONS

For certain random processes, we find that their cor-

relation functions become independent of the reference

t; in other words, they are invariant with respect to
time translations such that

rxx(t+t0, r+t0) = rxx(t,T) (2. 3)

rxy(t+t0, r+t0) = rxy(t,r). (2. 4)

These processes are called stationary. Because their

correlation functions depend only on the correlation
time T, we may write

rxx(t, T) = Kxx(T) (2.5)

I_xy(t, T) = Kxy(T) (2.6)

for stationary processes.

&

Stationary processes often exhibit the further

property that their ensemble averages taken over a

large number of member functions are identical with

their corresponding time averages ona single member

function; i.e.,

= lira iKxx(T)
T.__o_- _ xk(t) xk(t+T)dt=Rxx(T) (2.7)

T

I_y)--(T" = lim I _ .T___o_--Jxk(t) Yk(t+T)dt = Rxy(T). (2.8)
-T

These processes are called ergodic. The question of

whether or not a random process is ergodic cannot be

answered for most practical cases, because.the num-

ber of member functions is usually very limited.

However, the recorded time of observation is often

sufficiently long to obtain a satisfactory time average.

Therefore, it is common practice to assume ergu-

dicity of the random process and to replace ensemble

averages by time averages wherever they occur inthe
analysis.

The following analysis exclusively uses correla-
tion functions based on ensemble averages. This af-

fords the possibility of analyzing noustationary pro-

cesses and avoids the restriction to ergodic processes.

Several important properties of stationary auto-

correlation functions can be directly derived from

their definition equations (2. l) and (2. 2)5

Kxx(T) = Kxx(-T) (2. 9)

I_(T) = Kyx(-T ). (2. t0)

The autocorrelation function of a stationary random

process is therefore an even function, whereas the

cross-correlation function is, in general, neithe_ even
nor odd.

Other properties of stationary correlation func-
tions of interest involve their derivatives:

d If

d==_Kxy(T) = K_y(T) = Kx_(T) ( 2. ii)

d-_- Kxy(_) ")= Kxy(T) = -K_(T), (2.12)

where the dot represents the time derivative of the

random time functions. It is worth mentioning that

the conceptofcorrelationfunctions can also be applied

to deterministic functions. The subsequentinvestiga-

tion will, however, be restricted to random time func-

tions. They shall alsobe free from dc or ac compon-

ents. Intuitively, the correlation functions of these

35



$

random processes approach zero as the correlation

time r goes to infinity.

(2) Power Spectra

It is known that problems that present com-

plicated relations in the time domain can often be

greatly simplified by a linear integral transformation

into the frequency domain. In this connection we re-

call the powerful usage of the Laplace transform in

linear network analysis. Similar simplifications are

obtained by a proper transformation of the correlation

functions introduced above from the time domain into

the freouency domain.

Because the correlation functions of random pro-

cesses vanish as the argument tends to infinity (dc

and periodic components excluded), they are abso-

lutely integrable; i.e.,

cO

f Ir(t,T)_ d,<_. (2.13)
--oO

As a consequence, it is possible to apply a Fourier

transformation to the correlation functions. This

frequency domain approach, however, is only ad-

vantageous for stationary processes. The value of

extending this concept to nonstationary random pro-

cesses similar to the equivalent description of linear

time-varying systems is very doubtful. In the sequel

the Fourier transformation will, therefore, be applied

only to stationary correlation functions.

The Fourier transforms of the stationary auto-

and cross-correlation functionare known as power

and cross-power spectrum, respectively. They are

given by

cO

Sxx(JW) = f Kxx(T)e -]wTdr
--cO

(2. i4)

cO

Sxy(JW) = f Kxy(T) e-jwrdT.
--cO

(2. i5)

Because the auto-correlationfunction is an even func-

tion, the power spectrum is a real function of w. In

addition, it can be shown that the power spectrum as-

sumes only positive values. The cross-power spec-

trum is, in general, complex. The physical signifi-

cance of both concepts will not be discussed in this

paper.

The inversion integrals corresponding to the de-

finition integrals (2. 14) and (2. 15) are

cO

i
Kxx(r) =_ f Sxx(JW) eJwr dw

--cO

(2. 16)

cO

1 eJWrdw.
Kxy(T) = _ f Sxy(JW)

--cO

(2. i7)

(3) Summation of Power Spectra

Contrary to the facterization of rational spec-

tra in the conventional statistical filter theory, it will

be necessary in the sequel to decompose thepower

spectra into the sum of two one-sided functions. To

.this effect we write the cross-power sepetrum in the

form

cO

0 -jwr f KX. (r)e-jW rdT"Sxy(JW) = f Kxy(r)e dr + Y
-cO 0

(2.18)

Replacing the correlation time r to -r in the first in-

tegral yields

cO cO

•Sxy(JW ) = f Kxy(-r) ejwrdr + f Kxy(r) e-jwrdr.
0 0

( 2. i9)

Using the relation (2.10) results in

cO CO

j_r. f Kxy(r) e-j_rSxyljw) = f Kyxlr)e or + dr.
0 0

( 2. 2O)

If we introduce, in addition,

(+) (-)

Kxy(r) = Kxy (r) +Kxy (r), (2.21)

where

(+) [Kxy(r) for o <-- r <

loKxy (r)=
for -co < r<o

( 2. 22)

and

(-) _ forO-<r<co

Kxy (r) =lK (2.23)xy(r) for -co < r<O

we obtain with the introduction of the Fourier trans-

form

cO (+)

Nxy(JW ) = f Kxy (r)e-JWrdr, (2.24)
--cO
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the expression ( 2. 20) in the form

Sxy(JW) = Nxy(JW) + Nyx(JW).
(2.25)

The asterisk denotes the conjugate complex function.

The new auxiliary functions Nxx(JW) and Nxy(jW )

will be called auto- and cross-correlation spectra,

respectively. Representing Fourier transforms of

time functions that vanish for negative arguments,

their poles are confined to the upper half-plane of the

complexfrequency plane w. Since the power spectrum

itself is non-negative, it follows, in addition, that the

real part of the auto-correlation spectrum is

Re (Nxx(J )) i=2 Sxx(JW) i>O (2. 26)

_for all w. The auto-correlation spectrum is, there-

fore, a positive real function (Ref. 4). As a con-

sequence, its zeroes, as well as its poles, are all

lying in the upper half-plane of the complex frequency

plane. This fact will prove to be of decisive import-

ance in the subsequent investigation of the realizability

of the statistical filter optimized with respect to the

new performance criterion.

HI. THE DESCRIPTION OF LINEAR SYSTEMS

The input-output relation of a time-varying linear

system canbe derived by usingthe principle of super-

position. Accordingly, the input _ (t) will be repre-

sented as a succession of impulses of magnitude _ (r)
dr (Fig. 2).

__1
_ T

_ _P(t)

_/, i(a.t)

FIGURE 2. SUPERPOSITION INTEGRAL

The function g (a, t) represents the output of the

system at the observation time t to a unit impulse ex-
citation applied at the earlier time r = t- a. The

variable r denotes, physically speaking, the excitation

time; the variable a denotes the ,age" of the function

g (a, t). This function is called the unit-impulse

response (weighting function) of the system. The

total output x (t) is now obfained by summing up the

responses of the system to all impulses of magnitude

(7) dr during the time of observation and adding the

effect of the initial state of the system. This is math-

ematically expressed as

t

x(t)= fg(r, t) _(r)dr+ _, ai(O)_i(O, t). (3.1)

o i

A characteristic feature of this relation is that it de-

composes the total output of the system in two parts,

the first part representing the zero-state response of

the system to _(t), the second part the zero-input

response starting in an initial state characterized by

the coefficients a i. This is the well-known decom-
position property of linear systems. The functions

@i(0,t) depend on the parameters of the system. For

stable systems, they tend to zero as time passes,

reflecting the finite memory of a physical system.

The input-output relation as given in Equation

(3.1) can be put in a more familiar from by setting

r = t - _, which yields

t

x(t) = / g(a,t) _(t-a)d_+ _ ai(0 ) _bi(0,t ). (3.2)
0 i

The influence of the initial conditions can be elimina-

ted if the effect of the input impulses is summed over

an infinite time segment, i.e., from r = -_o to r = t.

This results in

x(t)= / g(a, t)@(t-_)d_.
0

(3.3)

As is seen from Equation ( 3. 1), the unit-impulse

response g(_, t) completely characterizes the zero-

state response of a linear system. For a completely

controllable and observable system, it gives also

complete information regarding its zero-input re-

sponse. Keeping this restriction in mind, we can

specify a linear system by its unit-impulse response.

A transformation of this function into the frequency

domain is again advantageous only for time-invariant
systems. In this case the unit-impulse response de-

pends only on the "age" _. For stable systems the

unit-impulse response is absolutely integrable such
that

f Ig(t)l
0

dt < _o. (3. 4)
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Its Fouriertransformis given by

F(jW) = f g(t)e-JWtdt
--00

(3. 5)

and defines the transfer function of a system. Be-

cause each physical system is nonanticipative, i.e.,

g(t) = 0 for t < 0, the transfer function has onlypoles

in the upper half-plane of the complex frequency plane
w. This condition is known as the realizability con-

dition of a system. Physically speaking, it means

that a system cannot respond earlier than the cause

arrives.

IV. OPTIMUM LINEAR FILTERS

(1) Statement of Problem

The basic problem of filter theory consists

in extracting a message that is contaminated by noise.

The process of filtering necessarily results in ampli-

tude and phase distortions of the useful signal, which

must to kept as small as possible. Depending on the

application of the filter to be designed, both types of

distortions affect the quality of the message in rela-

tively different magnitude. It is therefore necessary

to find an appropriate compromise between these dis-

tortions. If the filter is to be used in voice trans-

mission, the phase distortion is not very critical be-

cause the human earhas a rather poorphase discrim-

ination. For the transmission of video signals, the

situation is just reversed; i.e., the quality of the

picture is much more sensitive to phase distortions

than to amplitude distortions. In general, however,

it is necessary to consider both distortions as equally

important and adapt them to the special requirements

of the filter problem. The modern statistical filter

theory does this by selecting a proper performance
criterion. Mostof them are based on the idea of min-

imizing the average value of a positive function of the

error, which is defined as

¢(t) = x(t) - d(t),

where x (t) denotes the actual output of the filter and

d (t) the desired message. The choice of a positive
function of the error avoids the cancellation of indi-

vidual positive or negative deviations from the true

value which would, of course, not show up in the final

error of the message. There are, however, a multi-

tude of other performance criteria, whose detailed

discussion would be beyond the scope of the present

paper. A system that satisfies a performance crite-

rion is said to be optimal with respect to the perform-

ance criterion under consideration.

(2) Mean-square Error Criterion

The best known performance criterion is the

mean-square error criterion. It is relatively math-

ematically simple and physically logical, because it

tries to prohibit the occurrence of large errors. The

undesirability of an error, however, increases quad-

ratically with its magnitude, which can result in an

unduly heavy penalty of large errors. As a conse-

quence, it may happen that systems that are optimized
with respect to the mean-square error criterion are

relatively insensitive for small errors. In cases

where small errors are just as undesirable as large

ones, it may be desirable to resort to another per-

formance criterion. Thus, the mean-square error

criterion, like all other performance criteria, is by

no means universal. Applied to statistical filter

problems, ithas, however, proven to afford a rather

adequate compromise between amplitude and phase

distortion of the useful signal. This is one of its main

advantages over other performance c riteria employed

in designing filters.

The purpose of the subsequent section is to ana-

lyze the mean-square error criterion in some detail

to assess its effectiveness and limitations. The know-

ledge gained in this investigation shall thenbe used to

derive a. new performance criterion that satisfies the

basic postulates of physical reality and mathematical

simplicity. Let us determine a linear system which

minimizes the mean-square of the ensemble average

< e2k(t) > = <[xk(t ) - dk(t)]2> (4.2)

for each time pointafter starting the system assuming

zero initial conditions.

Following the statistical approach to the filter

problem, message and noise are treated as random

processes whose correlation functions are assumed

to be known in advance. The input should be com-

posedof the sum of message m(t) and noise n(t) such

that

_b(t) =m(t) +n(t) . (4.3)

The desired output d (t) is allowed to be the resultof

a physically realizable operation on the message in

the form

d(t) = Op { m(t) } (4. 4)

where Op designates the operator on the message.

Physically realizable operators are those that depend

only on the past. We restrict the analysis to the sub-
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class of linear operators that are invariant with re-

spect to time translations. Using the superposition

integral 13.2) and the fact that the averaging operators

commute with the integral operator, we can bring the

expression (4. 2) in the form

<_k (t)> = <x_ (t) - 2<xk(t) dklt) >+ <d_(t)>

t

= f gl _,, t) < _Ok(t- cX)xk(t) >d(x 14.5)
O

t

-2 f g((x, t) < _klt-(x) dklt) >d(x + <d_(t)>.
O

Introducing the appropriate correlation functions yields
t

< _klt)> = f g(c,,t) r gxl t-(x, (x) d(x
O

t (4.6)

-2 f g(_, t) r odlt-(x, (x) dry + rddlt, o).
0

The problem consists now of finding a unit-impulse

response g((x, t) for which the ensemble average of

the squared error becomes a minimum. This prob-
lem can be solved by the well known rules of the cal-

culus of variations. However, the final result shall

here be derived from a purely statistical cons ideration..

Becausemessageandnoise are onlyknown inthe form

of statistical quantities, it is principally impossible

to completely recover the desired message at the out-

put terminal of the filter. We can, however, require

that the statistical properties of the output x(t) be the
same as the desired message d(t). If the well known

method of extracting a signal by cross correiation

with the desired message is recalled, the thought

comes to mind to require the cross correlation of the

output x(t) with the input signal _0(t) to be identical

with that of the desired message d(t)itself. By

virtue of the causality principle, care has to be

taken that the output x(t) is only correlated with input

values of an earlier time segment. This complies

with the realizability condition of physical systems.

The optimal correlation shall, furthermore, be en-

forced for all time segments within the operating time

of the system. The mathematical formulation of this

statistical relation yields

fox(t-% T)= l"0d(t-T,T ). O<--T-----t .. (4.7)

It is indeed surprising and worth noticing that this

optimum condition, which was obtained by a pure sta_

tistical consideration,is equivalent with the posbJlate

of minimizing the mean-square error. This can be

directly deduced with the well known input-output

cross correlation theorem for linear systems, which

r 0g(t -- T, T) = <_Pk(t- T) xk(t)>

t (4. 8)

:f g<(x,t) <_0k(t- T) _0k(t- (x) >d(x,
O

and, after introducing the autocorrelaUon function of

the input signal,

t

rxlt-r, r) = fgl(x, t) rcp(plt- T, T- (x) d(x. (4.9)
O

inserting this equation in the optimal condition (4. 7)

results in the integral equation for the optimum filter
in the form

t

r<pd(t-%T)= f g((x,t) I"0_0(t-T,T-(X) d(x.
O

O_T_t.

( 4. 10)

This integral equation, however, is identical with that

of Shinbrot (Ref. 5), which was derived using the

mean-square error criterion and applying the conven-
tional methods of the calculus of variations. This

confirms the above assertion.

The minimum mean-square error pertaining to

(4. i0) follows from (4. 6) as

t

< _ (t) >Min = rddlt'°) - f gl(x,t) r0d(t-(x,(x) d(x.
O

14.11)

Extending the operating time in equation (4.10) to in-

finity yields the special case of Booton (Ref. 6):
oo

I'0d( t- T, T) = f g((x,t) r 0_o(t- T, T-(X) d(x. 0----- T< oo.
0

14. 12)

Restricting the analysis to time-invariant systems and

stationary random processes finally reduces the inte-

gral Equation ( 4. I0) to

¢o

K_0d(Ir)=fg1(x) Kq_0(T-(X) d(x. , T_).
0

( 4. 13)

This is the celebrated Wiener-Hopf integral equation
(Ref. 2).
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Equation (4.11) shows that the last two special

cases minimize the mean-square error only after all

transients have subsided.

The above derived integral equations remain to be

investigated with respect to existence, uniqueness, and

stability of their solution. In most practical situations,

these questions have a relatively simple answer by pure

physical considerations. A closed-form solution of

these integral equations -- even for the Wiener-Hopf

type -- is possible only in some simple cases. In

. general, the solution must be obtained bynumerical

methods. Although these do not represent major cli_-

ficulties, they mostly involve rather extensive com-

putational efforts• A disadvantage of this situation is

that it is very difficult to interpret numerical results

physically or deduce general statements that could

afford a deeper insight into the basic features of the

filtering process.

V. CROSS-CORRELATION CRITERION

(1) Optimum Transfer Function

With the knowledge gained in the preceding

section, we no_/ turn our attention to finding a new

performance criterion for solving statistical filter

problems. To keep the mathematical formalism

simple, we restrict the analysis inthe sequel to time-

invariant systems and stationary random processes.

The new performance criterion to be established can,

however, easily be extended to the general case of

time-varying systems and instationary random pro-

cesses. The advantage of mathematical simplicity

over other existing performance criterion is then

essentailly lost, because these cases can in practice

only be solved by numerical methods.

We bring back in attention the filter which is op-

timum with respect to the stationary mean-square

error criterion (Wiener criterion). This optimum

filter (Wiener filter) is uniquely determined by the

integral equation

oo

K(pd(TS= J_g(c_) K_gO(T-c_)d_.. T__o. (5.15
O

Comparing the right-hand side of this equation with

equation (4..10), we see that the Wiener filter repre-

sents the limiting case of the general statistical opti-

mum condition (4.75 for t = 0% i.e.,

rqox (oo, T) = Kq_d(_).. T_O• (5.25

Restricting the analysis to time-invariant systems,

the output x(t) assumes stationary character after the

transients disappear. The instationarycross-correla- "

tion function in Equation (5. 2) can therefore be re-

placed by its corresponding stationary correlation

function. This results in the well known relation of

the Wiener filter theory:

Kcpx(T) = K(pd(_'). T_O• ( 5. 3)

From this it follows that the optimum correlation be-

tween output and input of the Wiener filter is attained

only after all transients have subsided. This explains

the known fact that the Wiener filter, in general, ex-

hibits poor transient behavior (e. g., poor relative

stability). To improve this situation, the statistical

optimum condition ( 4. 7) shows that it is possible to

obtain the optimum correlation immediately after

starting the system by setting t = T. This yields the

second limiting case:

Fcpx(O , T)= K(pd(r ). _>o
(5.4)

Statistically speaking, the relations established in

equations ( 5. 2) and ( 5. 4) are equally meaningful and

informative. Thus, it seems justified to introduce

the relation (5. 4) as a new performance criterion for

the statistical treatment of filter problems• In the

sequel, this performance criterion will be called

cross-correlation criterion. A common feature of

this new criterion and the Wiener criterion is that

they represent limiting cases of the general statisti-

cal optimum condition (4. 7). ,_s a consequence, they

do not achieve the optimum cross correlation between

output and input of the filter for all correlation times

within the operating time interval. They supplement

each other, however, insofar as the Wiener criterion

emphasizes the behavior of the filter for the stationary

condition, whereas the cross-correlation criterion

tries to optimize the transient behavior. Further-

more, it is to be expected that the cross-correlation

criterion, by virtue of its well-defined reference time,

exhibits a rather strong sensitivity with respect to

phase differences• Main applications of the new cri-

terion are, therefore, envisioned in phase-sensitive

servosystems and systems where the transient re-

sponse is the only acceptable measure of system per-

f(_rmance.

The new performance criterion can also be rep-

resented in the integral form

co

I = f [Fcpx(O, T) -K0d(T)]2dT. (5. 55
O
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Thus, it appears as a modification of the minimum-

- square-cross-correlation-error criterion introduced

byY. W. Lee (Ref. 7):

oo

I L = f [ K ox(T) - K d(r) ] ZdT. ( 5. 6)

The integral equation governing the optimum filter

follows directly as a special case of (4. 10) or can be

derived from Equation (5.5) by the calculus of varia-
tions. It reads:

T

K od(r) = f g(_) K a_0(T-_) da .
O

_'----o (5.7)

Contrary to the Wiener-Hopf integral equation ( 5. 1),

the present integral equation represents a genuine

convolution integral. Its solution is directly obtained

by the Laplace transformation of Equation (5.7).

The optimum transfer function with respect to the

cross-correlation criterion is, therefore,

N_d(S) (5. 8)
F(s) - N (s)

In the sequel this filter will be called correlation filter.

The realizability of the optimum filter is guaran-

teed by the fact that the auto-correlation spectrum

N (s) appearing in equation (5.8) is a positive real

function such that its poles and zeros are lying in the

negative s-half plane (upper half plane of complex

w=plane). Because the cross-correlation spectrum

contains only poles in the negative s-half plane, the

optimum transfer function (5.8) is free of poles in the

right-half of the s-plane.

In the subsequent section, we will derive some

typical examples of filter problems and solve them by

applying the new performance criterion All relations

are derived for the complex s-plane rather than the

complex w-plane, which results in some simplifica-
tion of notation.

(2) Pure Delay

We begin with the simplest'problem to find

an optimum system that reproduces a message m(t)

with a time delay a in the absence of noise. There-

fore, the input is given simply by

_a(t) = m(t). (5. 9)

The desired message is

d(t) = m(t- a). (5. 10)

The expressions for the pertaining correlation spectra
are

Nq_p(s) = Nmm(S) "(5. it)

-as

N pd(S) = Nmm(S) e (5. 12)

According to Equation (5. 8) the optimum transfer
function is

_ N___.od(s) -as
F(S) - - e

N (s)
(5. i3)

The optimum transfer function is a pure delay element

whose ampliinde characteristic is constant and whose

phase shift is proportional to the frequency. The

Wiener theory yields the same result.

(3) Pure Prediction

Now the message shall be predicted by a

time units in the absence of noise. This can be

achieved only by employing an operator that depends

on the futttre. Thus, it is physically not realizable

and does not belong tothe originalclass of admissible

operators. Because the Wiener theory, however,

pays much attention to the prediction problems, we

will also discuss it here in some detail. Formally,

the solution of the prediction problems is obtained by

simple sign change of the delay time a which yields

the transfer function of the correlation filter:

as

F(s) = e ( 5. 14)

Approximations of this transcendental transfer func-

tion are readily obtained by the first few terms of the

Taylor series:

a 2

F(s) = t + as+_-, sz + .... ( 5,,15},

Thefirst approximation to a pare predictor is, there-

fore, a combination of gain and differentiation. Higher

approximations are obtained by considering more

terms of the Taylor series. The number of terms

that have to be taken for a satisfactory "prediction"

naturally depends on the magnitude of the prediction

time a. Similar to the previous problem the optimum

transfer function is independent of the statistical
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characteristics of the message. On the contrary, the
Wiener triter of the prediction problem depends deci-

sively on the statistical nature of the message, For
comparison we turn our attention to some conbrete
examples.

Example P-I:

The auto-correlationfunction of the message

is assumed to be

Kmm(, ) = e-_r_(eos , + sint,lt. (5.16)

The corresponding power spectrum reads:

t
Smm = --(_) I+ _4 •

(5. 17)

The Wiener theory yields the optimum transfer func-
tion in the form (Ref. 2)

Fw(S) = e (cos/_ + sm4_ )

+ s e sin_.
fz

( 5. 18)

Because all practicalsituations require the restriction

to small prediction times, we develop equation (5.18)
with respect to (_ in a Taylor series and consider only
linear terms, i This results iv

F (s) =l+_s. (5.19)
w

Considering me restrictions which have to be imposed
on all practical prediction problems, we can statethat

the Wiener filterofthe present predictionproblem is

identicalwith the corresponding correlationfilter.

Example P-2:

The auto-correlation function of the message
is assumed to be

K (_) =(i +l_)e -Irl (5.20)
mm

and its power spectrum

1
Smm ((_) - (I++ (_9)2 (5. 2 !)

The optimum transfer function of the Wiener filter
assumes the form:

= e -(_F (S) [(i + _) + _S]. ( 5. 22)

Developing again in a Taylor series with respect to ,v

yields the first approximation:

Fw(S) = i+_s. (5.23)

Once more both theories yield the same result.

Example,P-3:

The auto-correlation function of the message

is assumed to be

Kmm(_') = e- t+1 ( 5. 24)

and its corresponding power spectrum

1
Smm (_0) = _. (5.25)

The optimum transfer function of the Wiener theory
is

"--(_,

F (s) =e . (5.26)
w

The optimum prediction filter is now simply an atten-

uator which reduces the amplitude of the message. A
differentiation and consequent displacement of the

message forward in time are not provided by the
Wiener theory. The reason for this seemingly puzzl-
ing result is that the class of time functions belongin_
to the selected auto-correlation function (RC-noise)
exhibits such fast fluctuations that their time deriva-

tives can assume infinitely large values. "A differen-
tion of such a time function would, however, lead to

infinitely large errors• It is quits natural that the
Wiener criterion, which puts a severe penalty on larg_
errors, cannot tolerate a differentiation of these time
functions. This precludes a prediction of this class

of messages. The cross-correlation criterion is not
subjected to this limitation. The same holds true for

all types of messages with peter spectra, whose de-
nominator is only two degrees higher than the numer-
ator. If, on the other hand, the power spectrum of a
message decreases very rapidly (e.g., ~ w-S), we
can expect that the Wiener criterion allows higher
differentiations of the message that would correspond
to the consideration of higher terms of the Taylor

series (5. t5). The question of which of the two per-
formance criteria is more realistic or suitable for

prediction seems to be rather academic. We can,
however, safely conclude that the new performance
criterion yields, in general, the same result as the
Wiener theory for the problem of predicting a station-

ary random process. The mathematical efforts asso-
ciated with the determination of the optimal Wiener

prediction filter are always quite substantial;
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(4) Delay (prediction)and Filtering

The message m(t) will, in general, be ac-

companied by a noise n(t) such that the total inlet _i_

given by

_(t) = m(t) + n(t). (5. 27)

The desired message d(t) "magain obtained by delaying

(predicting) the message; L e.,

d(t) =m (t_ ct), (5.28)

where the positive sign indicates a prediction and the

negative sign a delay of the message. The various

correlation spectra for this case are then

Ndd (s)= Nmm(S)

N d(S) = [Nmm(S) + Nnm(s) ] e _s (5. 291

Nq,_{S) = Nmm(S) + Nnm(S) + Nmn(S) + Nan(, ).

The transzer function of the correlation filter reads:

Nmm(S) + _nm (s) :_s

F(s) = N (s) e . ( 5. 30)

The correlation filter consists, therefore, 0t a cas-

cade of noise filter and delay (prediction) element

(Fig. 3).

FIGURE 3. DELAY (PREDICTION) AND
FILTERING

As a consequence, the problem of filtering and delay

(prediction) can be treated in two separate parts.

The first part consists of designing a filter with the
transfer function ,

Nmm(S) + Nnm(S)
F(s) =

Nmm(S) + Nnm(S) + Nmn(S ) + Nnn(S )

(5.31)

the second part of designing a lag (lend) element of

+high precision. The delay element (play-back tape
recorder, hi-fi record, etc._ can be constructed

completely independent of the statistical natztre of the

message (e. g., speech, classical music, jazz). It

is interesting and advantageous that _e new perform_

ance criterion automatically separates the determi_

istic part of the filter problem from its-random part.

This appears also to be a realistic requirement.

Several special cases of impo_ can be de-

rive&_om the general equation ( 5. 31).

Particularly often encountered is the situation in

which message andnoise areuncorrelated. We obtain
then

N (s)

Fls)- Nmmlsl + NnnlS) .
( 5. 32)

This relation may be used also in the frequent case

that the correlation between message and noise is not

known. Of practicalAmpo_-ts the+

tion of a messagein the presence of a high _viiitem_e

level. In this case, the auto-correlation spectrum of

the message can be neglected with respect to that of
the noise such that

Nee(S)
F(s) =

N (s)
nn

( 5. 33)

This formula can also be applied if the signal-to-noise

power ratio is not known. The filter is then (com-

pletely) overmatched (cf., example 4). The relation

(5. 33) simplifies further for white (or unknown)

noise interference. After appropriate normalization
the transfer function reads.

F(s) = Nmm(S ). (5. 34)

The optimum filter is, therefore, adapted only to the

auto-correlation spectrum of the noise.

(5) Periodic Message

Finally, we _scuss a filter problem that

cannot be treated in the Wiener theory, the important

problem of reproducing a periodic message subjected
to random noise interference.

The auto-correlationftfnction of a periodic signal
of the form

C oo

m(t) =--_-+ n=1_jj CnCOS(n_ t+o an ) (5.35)

reads:

2

Co ln_ ' CnZ cosn_ T ,Kmm(r)= i +2 =I o
( 5. 36)

The auto-correlation function of a periodic signal is a

cosine series with zero initial phase angles.
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Withthe introduction of the new quantity

C 2
n

Cmm (n) - 4 ' (5.37)

the expression (5. 36) can be transformed into

cC_

K (T) =Z _mm(n) cosn_ T .mm o
(5. 38)

The quantity Cmm(n) is known as the power spectrum

of the periodic signal re(t). The power (denKi_)

spectrum of the auto-correlation function _. _'},

however, is given by

. C'2 _o

• o i_Smm(O_) =--_-- S(o_) +_ C z S([_| - nWo).
=1 n

(5. 39)

The power (density) spectrum degenerates, therefore,

to a sum of Dirac-functions (Dirac comb). A factor-

ization of such a spectrum as required by the Wiener

theory is consequently not possible. The auto:
c0rrelation spectrum of equation (5. 36) is

N is) 1 c_o I _=-- .'v--'- "+ C
mm 4 s -2

s

S2 + (nOJo)2

( 5. 40)

The optimum transfer function shall here be derived

only for the (completely) overmatched condition relY-

resented by equation ( 5. 33) and with the assumption

that the periodic message has no tic-component. This

results in

I _i + (n_°)2
( 5. 4t)

F(s) = _ Nnn(S)

The optimum transfer function is adapted to the power

spectrum of the message and the auto-correlation

spectrum of the random noise. The situation is

similar to the comb filter technique where the optimum

filter (comb filter) is adapted to the amplitude spec-

trum of the message and the power spectrum of lhe

noise.

For white noise interference Nnn(S ) = go _, 1he

correlation filter consists of a series of narrow band-

pass systems whose attenuation is tuned to the power

spectrum of the periodic message.

The cross correlation criterion affords the pos-

sibility of reducing the phase error by appropriate-

matching of the signal-to-noise power ratio by em-

ploying equation ( 5. 32). The comb filter technique,

however, does not provide for a similar consideration
of the ptame error.

VI. NUMERICAL EXAMPLES

For further illustration of the significance of the

new performance criterion, the subsequent section

discusses some typical filter problems and compares

them with the correspondingresults obtained by apply-

ing the Wiener criterion.

Example I :

The: first example eonsidexs _the ,problem of

designing a filter for a message that is contaminated

by white noise. The message is assumed to have the

auto-correlation function

_ e-_'I'TI (6. 1)
K mlT) =o"m m

and the power spectrum

2_
Smm( _) = CrmZ _ + j' (6. 2)

The white noise signal has the power spectrum

Sun.(c0) = ko 2 (6. 3)

The corresponding auto-correlation spectra are

cr 2

m (6.4)
Nmm(S) =_+s

and

• o

Nnn(S) = ---_-. (6. 5)

This particular problem cannot only be solved by the

Wiener theory but als0 by a method of the classical

theory of communication. According to the latter we

select a low pass filter, whose bandwidth is rather

arbitrarily chosen to be the intersection between the

power spectrum of the message and the noise. The

bandwidth is, therefore, determined by equating Equa-

tions ( 6. 2) and (6. 3). The result is

2

_2 = o

o

where

z = 28 o_
GO m

(6. 6)
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TheWienertheory,on the otherhand,yieldsa low
passfilter withthebandwidth

ot2

0

The bandwidth of the Wiener filter is always higher
than the classical filter.

Applying the new performance criterion again

yielchs a low pass, but its bandwidth is now given by

+_ = (_' + +_)"= I " (6. 8)

Comparing with equation (6.7) shows that the correla,

Uon filter has a still higher bandwidth than the Wiener

filter. For increasing noise level, however, the cor-

relaUon filter approaches the Wiener filter asymp-

tetical_

The corresponding amplitude and phase charac-

teristics of these three differently designed filters are

shown in Figures 4 and 5 for numerical values of _ -

1, _ = 1, ), = 0. 5. It is recognized that, while an in-

crease in bandwidth increases the portion of the noise
in the total output of the filter, it also results in a

substantial decrease of the phase error in the region

of the message. _.(In the subsequent discussion, the
phase error shall be defined as the deviation from the

zero value. As such it is to be distin_liRh_d from the

definition of the phase distortion in the conventional

communication theory.) The phase error is smallest

for the correlation filter and largest for the conven-

tional filter; the Wiener filter takes an intermediate

place in this particular example.

I t
++\\\ i+++ I
+-' \\\It + +

0.4 % l

O0 | 4 • • 10 I11 14 II II _

FIGURE 4. NORMALIZED AMPLITUDE CHARAC-

TERISTIC OF CLASSICAL FILTER (1)

WIENER FILTER (2), AND CORRELA-

TION FILTER (3)

li+iriiiii
4 @ II m I

+ +
FIGURE 5. PHASE CHARACTERISTIC OF CLASSI-

CAL FILTER (1), WIENER FILTER (2),

AND CORRELATION FILTER (3)

Example 2:

The task is+to+filter a m.essage whose auto-
correlation function is of the form

Kmm( T). = O'm_ e-al_l icon _T +

+ _ sin_o_-a2j%+-,,, i"l (6.,,>

in the presence of noise whose autocorrelation func-

tion is given by

K • (T) = oZe -birl: _ (6.10)
_ n

In addition, message and noise should not be come-.

lated. The corresponding power spectra are

4aaJ 2

S (_)=cr 2 ) o
mm m (_-WoZ _+4a2_ _ (6.11)

0

and

Snn(W) = _ 2 2bn b 2 + _2 ( 6. 12)

The corresponding correlation spectra read:

Nmm(S)= _ 2 2a+sm s2+2as+w 2 (6.13)
O
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and

1 (6. t4)
(s) = _n 2Nnn b + s

The optimum transfer function of the correlation filter
is derived from Equation ( 5. 32) as

1 (b+s) (2a+s)

F(s)=_+ R2 s2 + 2a (I+R z) +b oJo2a2+/2ab '
i+R z s+ i+a 2-

(6. 15)

where R2= _n 2/_m 2 is the noise-to-signalpower ratio.

The transfer function of the corresponding Wiener
filter cannot be given in closed form. To compare
both filters, a numerio'al exmiaple is-:eetected_wh_me

perthining values are given as a= 2 sec -1, b = I sec -l,

w o = 10 sec -1, and R2 = 1. The corresponding corre-

lation functions and power Spectra are short in

Figures 6 and 7. The correlation functions are nor-

LO

\

0.4

0.4

0.2

0

.-O&

-0.4 l

-OA

\y J,,- 4O

.r (llil

FIGURE 6. NORMALIZED AUTOCORRELATION

FUNCTIONS OF MESSAGE AND NOISE,
EXAMPLE 2

malized tO unity catt_the) origin, whereas, the Im_
spectra are normalized such that the areas under their
curves are equal according to the noise-to-signal
power ratio 1_2 = 1. The transfer function of the
correla.tion filter is

Fk(S) =0.50(s (s+2-9.8j) (s+2+9. Sj)+2,25-6.85j) (s+2.25+6.85j) '

(6. 16)

and,the transfer function of the Wiener filter

N_

Lf,

0.|

OJI

0.4

0.|

0 o

i
i "

\ i
• 4 • •

I i
i I

I0 12 14 II • I0 ed_,. )

FIGURE 7. NORMALIZED POWER SPECTRA OF

MESSAGE AND NOISE, EXAMPLE 2

(s+2- 9. 8j) (s+2+9. 8j)
Fw(S) =0.86 (s+ 8. 5) (s+ 12) (6.17)

In this particular example, the zeros of beth filters
are identical.

Normalized amplitude and phase characteristics
of both filters are depicted in Figures 8 and _. The
correlationfilter of this example has bett_r selectivity

than the Wiener filter. In the spectrum of the mes-
sage ('w -_ 10 sec -1) , however, the Wiener filter ex-

hibits a smaller phase error than the correlation
filter.

1
]
] i

]

I

!

4 • $ I0 lie 14 HI lid lO w fl_ |

FIGURE 8. NORMALIZED AMPLITUDE CHARAC-

TERISTIC OF CORRELATION FILTER

AND WIENER FILTER, EXAMPLE 2

Figure t0 shows an analog computer diagram to
demonstrate the performance of beth filters when
simulated on an analog computer. Message and noise

are generated by two independent low-frequency

Gaussian noise generators and suitable shaping filters.

The power spectrum of the noise genera_r is constant
within 0. ,_ db,i_t_h_,fu_cqtm_, y domainzfrom_ 0-35 c_._,
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FIGURE 9. PHASE CHARACTERISTIC OF CORRE-

LATION FILTER AND WIENER FILTER,
EXAMPLE 2

FIGURE 10. ANALOG COMPUTER DIAGRAM FOR

SIMULATION OF EXAMPLE 2

The recorder No. 1 records the noise signal (RC-

noise), the recorder No.. 2 _ message as a narrow

band random process= smnming message and noise

yields the input Signal of the filters which is recorded

by recorder No. 3. Recorder No. 4 shows the output

of the correlation filter, and recorder No. 5 the out-

put of the Wiener filter.

Figure 11 contains all records. In addition, it

shows the band_vidth-limited white noise of the noise

generator and the time marks with a distance At = i

sec. Since Figure 11 is only an optical illustration,

it is not suited to appraise the '_luality" of the re-

production of the message. Such an appraisal would

FIGURE 11. ANALOG COMPUTER RECORDS OF

EXAMPLE 2

always be limited to the visual e__o_._twe-
cords which is much more sensitive to amplitude dis-

tortions than to phase errors.

Example 3:

In this example, message and signal are just

interchanged. The transfer function of the correlation

filter is then given by

1
Fk(S)=

sZ + 2as + w z
0

_2+ (2a+____RT b) s +

o_ + 2Rlab
O

l+R l

(6. i8)

Inserting the appropriate numerical values yields, for

the correlation filter, the expressiov

Fk(S) = 0. 50
(s+l) (s+4)

(s+ 2.25-6. 85j) (s+2.25+6.85j)

(6. t9)

and for the Wiener filter

F (s) =0.86 (s+l) (s+114) (6.20)
w (s+8.5) (s+ 12)

The situation is now exactly reversed. According to

Figures 12and.13, the Wienerfflternow exhibits better

selectivity than the correlation filter, whereas its

phase error within the spectrum of the message is lar_r

than that_ the correlation filter. The Wiener filter

does not allow a phase error in the region of the noise

I
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FIGURE 12. NORMALIZED AMPLITUDE CHARAC-

TERISTIC OF CORRELATION FILTER

AND WIENER FILTER, EXAMPLE 3

FIGURE 14. ANALOG COMPUTER DIAGRAM FOR

SIMULATION OF EXAMPLE 3
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FIGURE 15. ANALOG COMPUTER RECORDS OF

EXAMPLE 3

PHASE CHARACTERISTIC OF CORRE-

LATION FILTER AND WIENER FILTER,

EXAMPLE 3

FIGURE 13.

spectrum (w "_ i0 sec -x) where the attenuation is a
maximum. The demonstration of this example on the

analog computer is shown diagrammatically in Figure

i4 and the resulting records in Figure i5. It is par-

ticularly interesting to evaluate the records visually.

The Wiener filter appears to be decisively superior tr
the correlation filter, since it is capable of reproduc-

ing also the high frequency content of the message

causing a high "similarity" between the output of the

Wiener filter and the message. The phase charac-

teristics, however, reveal that this portion of the

message suffers a phase error of close to 40 °, Al-

though the eye is apparently very insensitive to such

a phase error, it is quite possible that such a per-

formance could be potentially troublesome in a phase-

sensitive feedback system.

Example 4-

Finally, we will consider dependency of se-

lectivity and pha_e error on the matching of the noise-

to-signal power ratio. Apossible correlation between

message ahd noise will not be considered in this par-

ticular study. The power spectrum of the message is

chosen as

4a w 2

= a 2 (o)2_O_m2Z___ mSmm (w) m +4a _ w_ (6.21)
m m
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Thepowerspectrumof thenoiseis assumedtohave

• the same structure:

n

Snn (w) = crn2 ( _ _ _n_) + 4a2n w2n ( 6. 22)

The corresponding auto-correlation spectra are

2a +s

Nmm(S) = _ z mm s z ÷ 2a s + w 2 ( 6. 23)
m m

2a ÷s

s (s)=_' _o.n (6.24)
nu n sIT._ s+_ 2 I

n n

The optimum transfer ftmction of the correlation filter
reads then:

Illl

'KC

Ir

.. I//

.. / /

/ -)
......_._ ..----

c
o

_ r_ __2._.

11 7
I \

\

• 4 • • IO • N II ill in llliil i )

FIGURE i6. NORMALIZED POWER SPECTRA OF

MESSAGE AND NOISE, EXAMPLE 4

(2,,=+.)
: •

( e. zs)

wliere again Ri = _nl/e 1.
m

The match factor k which is introduced in

flon ( 6. 25) is dimensionless and designates lhe degree

of matching the noise-to-signal power ratio..The

value of k = ! corresponds to the matched condition;

for k _1, the filter operates underma_hedor over_
matched.

The numerical values of the example are

a =l. 2sec -I a =2.4sec -I
in n

= 6.0see -1 w = 12.0sec -l
m n

R2_-1.

The power spectra of both input signals, shown in

Figure 16, are normalized to equal areas (R 2 = 1).

_ne dependency of amplitude and phase characteristics

onthe match factor k is depicted in.Figures 17 and 18.

It is interesting to see how the selectivity of the filter

can be raised by increasing the match factor k, ac-
companied, however, by a deterioration of the phase

characteristic. Selectivity and phase error are high-

est for the completely overmatched condition (k = _).

Example 5:

In this example, message and noise are again
commuted with respect to the previous example. Am-

w

Pi

A"
J m,mm

LiP

• • 4 @ • lii • Ill I0 I nedma_l

FIGURE 17. NORMALIZED AMPLITUDE CHARAC-

TERISTIC OF EXAMPLE 4 WITH

MATCH FACTOR k AS PARAMETER

plitude andphase characteristics (Figures 19 and 20)

show essentially the same behavior as in Example 4.

The selectivity is again improving for increasing

values of the match factor k while the phase charac-

teristic deteriorates.

The choice of the proper match factor depends

completely on the relative importance of amplitude

and phase distortions for the system under considera-

tion. This has to be investigated anew for each con-
crete case. The purpose of the above example was

only to show how a suitable compromise between phase

and amplitude distortion can be achieved by varying

the matching of the noise-to-signal power ratio.
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FIGURE 20. PHASE CHARACTERISTIC OF

EXAMPLE 5 WITH MATCH FACTOR

k AS PARAMETER

ing of the statistical filter process but also assists in

the practical synthesis of networks. In addition, the

new criterion can also be used for filter problems in-

volving periodic signals. This opens the possibility of

comparing the new criterion with other conventional

techniques of filterdesign in this area. The new per-

formanee criterion cannot claim to be universal.

Rather, it represents a welcome addition to the al-

ready existing performance criteria and enhances the

flexibility of optimum filter design. Effectiveness and

limitations of the new criterion can be judiciously as-

sessed only by further extensive studies and applica-

tions in practice. Because of its mathematical sim-

plicity, it could provide new stimulus for analyzing

more complicated filter problems.
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VARIABLE POROSITY WALLS FOR TR'ANSONIC WIND TUNNELS

by

A. Richard Felix

SUMMARY Io-]O.2

O,
Variable porosity walls were recently installed in

the transonic testsection of the 14 by t4-in. Trisonic
O.4

Tunnel at Marshall Space Flight Center. Evaluation _/_
tests have indicated that use of these walls greatly °.5

improve_he ability of this facility to produce reason-

ably accurate nlodel pressure distribution data °.*

throughout the critical and difficult Mach range from 0._

1.0 to 1.25. The evaluation was accomplished by

comparing pressure distributions for a 20 ° cone- 0._

cylinder model with interference-free data for the
0._

same model. The range of porosities used is between

0. 5 percent and 5. 4 percent with the holes being

slanted 60 ° .

O

C. O

1.0 2.0 5.0 4.0 5.0 O.O

X/D

FIGURE i.

I. INTRODUCTION

Several recent experimental investigations [ 1, 2,

3,] have established that interference-free pressure

distributions in the transonic speed range between M =

1.0 and 1.3 cannot be produced in a transonic wind

tunnel having a single, fixed-wall porosity. To pro-

vide an optimum wave cancellation at the wall, a small

porosity is required at Mach numbers near 1.0 and a

larger porosity at or near M = 1.3. However, forme-

chanical simplicity, it has been standard procedure in

transonic test sections, including the 14by 14-in.

Trisonic Tunnel at MSFC, to use walls having a single

fixed porosity (usually about 6 to 8 percent open area

for 60 ° slanted holes). Such an approach has obvious

advantages and is satisfactory except for tests requir-

ing accurate pressure distributions throughout the

transonic range. Figure 1 illustrates the magnitude

of the errors in model surface pressures which may

result from use of a single wall porosity. The sym-

bols represent data taken in the MSFC 14 by 14-in.

Trisonic Tunnel when equipped with a single fixed wall

porosity of about 7.5 percent using 60 ° slanted holes.

The model is a 20 ° cone-cylinder with a tunnel block-

age ratio of 0.9 percent. Comparison of these data

with interference-free results from the 16-ft. Tran-

sonic Tunnel at AEDC shows that wall-reflected dis-

turbances produce errors as great as 13 percent.

To minimize these wall interference effects in the

Mach number range between i. 0 and 1.3, it was de-

cided to design and install a variable porosity wall in

----INTE F]EI_It_

O O O O
O

O

O O

7.0 8.0 9.0 lO.O 11.0 12.0

CONE-CYLINDER PRESSURE DISTRIBU-

TION AT M = io 10 FIXED TUNNEL WALL

POROSITY OF 7. 5% WITH 60 ° SLANTED

HOLES

the transonic test section of the 14 by 14-in. Trisonic

Tunnel. This paper describes these walls and the

results achieved from their use.

II. DESCRIPTION OF FACILITY

The 14 by i4-in. Trisonic Tunnel (Fig. 2) is an

intermittent blowdownfacility exhausting either to the

atmosphere or to vacuum. Stagnation pressure is

controlled at values between one and seven atmos-

pheres with stagnation temperatures controllable be-

tween 100 ° and 200 ° F. Air is stored at 500 psig in a

6000-ft 3 bottle. Vacuum storage field is 42,000 ft 3

evacuated to t mm Hg. The Mach number range from

0.2 to 5.0 is achieved by two interchangeable test

sections -- one covering the Mach range from 0. 2 to

2.5 and the other spanning the range from 2.75 to 5.0.

The transonic test section ( Fig. 3) uses a set of sonic

blocksto produce Machnumbers from 0.2 to 1.3. The

portion of this range from 0.2 to 0.85 is set by use of

a controllable diffuser. The portion from 0.9 to 1.3

is set by regulating, wall porosity, wall angle, and

plenum suction. Three sets of discrete blocks pro-

duce Mach numbers of 1.5, 2.0, and 2.5.

The Mach range from 2.75 to 5. 0 requires in-

stallation of the second or supersonic test section.

This test section uses fixed contour movable blocks

which can be both translated and tilted to produce the

desired Mach number.
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FLOW_

OPEN CONDITION

FIGURE 2. PHOTOGRAPH OF 14 X 14 INCH TRI-

SONIC TUNNEL

FIGURE 3. SKETCH OF TRANSONIC TEST SECTION

HI. DESIGN AND CONSTRUCTION OF VARIABLE

POROSITY WALLS

The design concept ( Fig. 4) employed for varying

the porosity is very simple. The inner wall nearest
the flow is fixed, and the outer wall is movable in the

axial direction, thins permitting a continuously vari-

able porosity from zero up to the maximum value de-

termined by the wall configuration.

The maximum porosity for which these walls

were designed is 5.4 percentand was determined from
in-house research results as well as fromAEDC data.

The nominal designvalue was 6 percent but a fabrica-

tion error produced the final 5.4 percent. Porosity

is definedas hole area based on hole diameter divided

bywall area. The fixed wall thickness is . L25 in., and

the movable wall is. 125 in- giving a total wall thick-

ness of. 250 in- The hole diameter is 0. 156 in. Fig-

ure 5 is asketchof the wall geometry. All four walls

are identical with the exception that floor and ceiling

wall angle can be varied slightly.

FLOWIng>

FIXED.',
"OV--'.,,

I PARTIALLY CLOSED
CONDITION

FIGURE 4. SKETCH OF VARIABLE POROSITY CON-

CEPT

_ _ : RXk'O WALL

.,_ _; __

SCAUE -- 2S'!

TVC_At _ ROtl

FIGURE 5. SKETCH OF WALL GEOMETRY

Wall movement is provided by a Globe planetary

gear motor having an output speed of 15. 4 rpm which
results in a wall translational speed of 0. 64 in/rain.

This permits a full porosity variation from 0 to 5. 4

percent in about 30 seconds. The position of the wall

is monitored by a Bourns linear potentiometer. Fig-

ures 6 and 7 are photographs of the front and rear of

typical wall.

FIGURE 6. PHOTOGRAPH OF REAR OF VARIABLE

POROSITY WALL
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FIGURE7. PHOTOGRAPHOFFRONTOFVARIABLE
"POROSITYWALL

IV. WALLCALIBRATIONPROCEDUREAND
MODELS

Themethodfor optimizingthewallsettingswas
chosencomparingpressuredistributionsfor a 20°
cone-cylindermodelwithinterference-freedatafrom
the16-ftTransonicat AEDC.

This particularconfigurationis aseveretestof
wall cancellationpropertiesbecauseof thestrong
pressurerise regiongeneratedbythecone,immedi-
atelyfollowedbythecenteredexpansionfieldemanat-
ingfromthecone-cylinderintersection.

Whenthisphaseof theinvestigationwascompleted
andwall porositiesand anglesoptimized,the20°
cone-cylinderwasreplacedbyastaticpressuresur-
veypipesothatalongitudinalMachnumbersurveyof
thetestsectionmightbemade.

Figure8 summarizesthephysicaldimensionsof
the20° cone-cylinderandthesurveypipe. The1,5-
in. basediameterof the cone-cylinderproducesa
tunnelblockageratio of 0.9percent. Figure9 is a
photographof the20° cone-cylinderin thetunnel.

Exceptas notedin Figure11, all datapresented
hereinwererunat a tunnelstagnationpressureof7
psia. ThecorrespondingReynoldsnumberperfootis
about6.5by10_.

V. RESULTSANDDISCUSSION

A systematicprogramwasconductedto evaluate
theeffectsof wallporosityandwall angleonwave
cancellationproperties.Therangeofporositiesin-
vestigatedwasfrom0to 5.4percent,andwall(ceiling
andfloor)anglesfrom30minutesdivergedto30min-

s-m¢| Q.ns • 2_.[%Lits | ° Ih_ILQ ._ B I._11

6- "m_L@ I-*W_U.@ II-INCl.e

_.'_ _, ,s.u,,s .4s,•:.,so .s_,s.s..s

SrAV_

FIGURE 8. SKETCH OF 20 ° CONE-CYLINDER AND

STATIC SURVEY PIPE

FIGURE 9. PHOTOGRAPH OF 20 ° CONE-CYLINDER

IN TUNNEL

utes converged. In addition to porosity andwall angle,

the plenum suction pressure was varied to produce the

desired test section Mach numbers. This facility has

a controllable diffuser for attaining subsonic Mach

numbers up to 0.85, but plenum suction is required

for Mach numbers between 0.9 and 1.25. The opti-

mized porosities and wall angles are summarized in

Table I.

TABLE I

M Wall angle, minutes Wall porosity, %

.9 + 15 5.40

• 95 + 15 5.40

1.00 - 15 0. 50

1.05 - 15 0° 75

i. iO - 15 i.60

i. 15 - 15 2. 50

1.20 - 10 5.40

i. 25 0 5.40

(+ indicates diverged, - indicates converged)
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As was previously mentioned, the effectiveness

• of the wall conditions was evaluated by comparing

pressure distributions for a 20" cone-cylinder with
interference-free data.

Results using Se wall conditions presented in

Table I are shown in Figure 10. Pressures are pre-

sented as a ratio of local static, Ps, to tunnel stagna-

tion pressure, Pt* The longitudinal orifice positions

are plotted in model diameters, X/D, measured from

the nose of the model. The Mach numbers presented

are 0. 90, 0.95, 1.00, 1.05, 1.10, 1.15, 1.20, and

1.25. The symbols represent the measured data

points, and the solid line on each plot presents the

interference-free data, as measured in the 16-ft Tran-

sonic Tunnel at AEDC [ 1].

The agreement between the measured pressures

and interference-free data is quite acceptable. No

significant reflections are evident as was the case in

Figure 1. The maximum error in Ps/Pt is about

+0. 02, representing a percentage error of +5. Two

exc'eptions are the surface pressures immediately

behind the cone-cylinder intersection at M = 0. 95 and

the cone pressures at M = 1.05. It is unlikely that

either of these disagreements is due to incorrect wall

cancellation properties.

Because the modelchosen produces avery severe

test of wave cancellation, it is felt that pressure dis-

tribution errors of less than +5 percent can be achieved

when more smoothly contoured configurations such as

ogive-cylinders are being tested.

The results of a longitudinal Mach number survey

of the test section using the optimized wall settings

are included as Figure 11. The abscissa in this plot
is the Tunnel Station in inches measured from the

downstream end of the test section or Station 0 ( Fig. 3L

The Mach numbers included in Figure 10 are present-

ed in Figure II, 0.90, 0.95, 1.00, 1.05, i. iO, 1.15,
/

$. 20, and 1.25. Each of the calibrations was made at

two stagnation pressures, 7 psig and 15 psig. The

agreement between the data at the two pressure levels

was very good, and for the sake of clarity, the 15 psig

data points are presented for oulytwo Mach numbers,

0. 90 and l.iO.

The normal test area or rhombus in this facility

is between Station 12 and Station 26. The Mach number

variation in this area is no more than +0. 02. The

drop in Mach number near Station 12 in the M = 1.05

plot is thought to be the resultof blockage of the chuck

which supported the static pipe rather than an actual

open tunnel condition.
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TEST SECTION MACH NUMBER DIS-

TRIBUTION WITH VARIABLE POROS-

iTY WALLS

VI. CONCLUDING REMARKS

The installation of variable porosity walls in the

transonic test section of the 14 by 14-in. Trisonic

Tunnel atMSFC has greatly enhanced its capability to

produce reasonably accurate model pressure distribu-

tions through the Mach number range between 1.00
and 1.25.
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SUMMARY

AUTOMATION OF POST-FLIGHT EVALUATION

by

Carlos Hagood

i

The results of a study to determine the feasibility

of automating the evaluation of flight test data are

considered. While operational results from this pro-

gram have not been obtained, comparison with data

from past flights indicates that the concepts and pro-

gram design will prove extremely useful. A large

number of telemetry measurements can be scanned

and useful information obtained in aminimum of com-

puter and analyst time shortly after a launch.

This type of analysis can now be done automati-

cally with adigital computer program to obtain a quick

assessment of the vehicle performance. This would

be done as follows:

1. Locate deviations in measurements from

nominal.

2. Determine whether these discrepancies are

due to instrumentation or telemetry problems, or

whether they do, in fact, represent deviations from

the expected flight characteristics.

This information will provide early knowledge of

minor deviations and malfunctions as well as some

insight into the cause of failures. A chronological

listing of the deviations are obtained in a timely fash-

ion. This analysis allows a sounddecision to be made

as to what "areas of the vehicle evaluation should be

concentrated on and how computer time should be

allotted.

Based on results obtained by comparing the auto-

mated analysis with the detailed analysis of SA-5, ap-

proximately 85 percent of the deviations were detected.

It is recognized that some failures cannot be found

with this type of analysis, and a detailed inspection of

measurements will still be required. However, the

number of measurements requiring inspection should

be greatly reduced. As additional experience is gained

in using this approach, the scheme will be modified to

improve its usefulness with respect to the tests per-

formed. Data presentation can be improved als.o.

I. INTRODUCTION

With the advent of computers with large data

handling capabilities, the ability to perform a prelimi-

nary quick-look postflight analysis of the many meas-

urements made on a Saturn vehicle within a few hours

has been realized. In the past, this analysis has been

accomplished by engineering analysts reviewing in de-

tail all measurements displayed in the form of oscillo-

graphs, plots, and digitized data. This type of analysis

requires the time of a rather large number of engi-

neers, atconsiderable expense and time, in determi-

ning what, if any, malfunctions or deviations existed

in a given flight test. All deviations were correlated

by subjective analysis of the observed discrepancies.

3. Determinewhichvehicle system or major sub-

system is the initiating cause of the malfunction.

4. Provide chronological histories and informa-

tion of the deviations in an organized form for the

flight analyst.

Such a computer program must be flexible to ad-

just easily to particular mission profiles, instrumen-

tation ctianges, or revised analytic requirements.

Therefore, the process was divided into a number of

functional steps, each of which tends to refine results

obtained from previous operations. The program was

then constructed in modular form to achieve the de-

sired flexibility. The various parts of the program

are discussed in the following sections.

If. DATA PRE PARATION

The source of nominal or predicted data for use

in a program of this type varies considerably with the

type of system being instrumented. The data in some

instances may not be realistic for the first flight test

in a block of vehicles. However, after a few flight

tests the performance of a vehicle can be reliably pre-

dicted, and the quality of results obtained from such

a program will be greatly enhanced.

Nominal data, used to compare with actual or

telemetered data, are obtained from a variety of

sources. These sources may be prototype testing,

static testing, wind tunnel testing, laboratory testing

of components, or predictions based on mathematical

models of the flight configuration. If a given vehicle

has been flight tested previously, the information ob-

tained from the flight or flights is used to update or

modify previously predicted data. In many instances

the only concern is whether a given level or red-line
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value is exceeded, which constitutes an upper limit

test of a given function. Input of this type of informa-

tion may be from magnetic tapes, table lookup, poly-

nomials, or constants.

Whatever the source of data to be u_ed for com-

p.a__sons there e.x_ists a set. of data for each individually

telemetered measurement. Telemetry data from the

flight are received in various forms at MSFC, The

data have consisted of analog tapes of the telemetry

data, partially reduced data, SC-4020 plots, etc. Be-

ginning with the flight of vehicle SA-9, a new mode of
data transmision will be used. Data will-be reoorded

at KSC in real time and stored in a data center. Trans-

mission to MSFC will be in near real time within a

transmission capability of 40. 8 kc. This makes a

significant amount of data available to evaluating seg-

ments at MSFC immediately after launch. These are

the data expected to be used in an automated evalua-
tion*

Certain processing is now required for these data

before being input to the program. This processing

involves linearization of the data, conversion to engi-

neering units, converting to even time increments for

testing, and, finally, writing input taPes. The possi--

bility of eventually using the data in the form in which

it arrives from KSC is being explored. If this pro-

cedure becomes acceptable, computer time could be

further reduced.

Before the comparison of telemetry data with

reference data is actually carried out, there are four

preparatory steps, each of which may be used or dis-

regarded, in accorda_e with the requirements of each

particular measurement being tested:

i. digitat filtering,

2. bias adjustment,

3. in-flight calibration removal,

4. data conversion.

IlL TEST DESCRIPTION

In general s the _ehicle and its systems will

operate as expected. Therefore, immediately follow-

ing a flight the volume of measured data confirming

this fact is of little immediate concern. Of urgent in-

terest, however, are any measurements that indicate

a deviation from the expected performance. The

function of thhe nominal tests is to_ isolnte such meas-

urements, which is done by comparing periodically

each individual measurement with its corresponding

predicted value (within prescribed limits), which may

be constant or variable. Oscillatory components

caused by bending or sloshing, for example, may also
be tested.

Quasi-static (Q. S. ) tests, one form of the nomi-

nal tests, are applied to virtually all measurements.
In some cases these measurements have been filtered

to remove oscillatory components. These measure-

ments are compared with reference data consisting of

predicted or allowable values. The Q. S. tests con-

sist of determ'ming at what times, if any, the teleme-

try data deviate from the reference data by more than
a specified tolerance. Deviations outside the tolerance

are referred to as test failures and can be caused by:
vehicle failure, malfunction, or deviation: invalid

telemetry data; incorrect reference data; or unreal-
istic limits.

The quasi-static test does not differentiate between

these possible causes. This is the task of subsequent

tests (correlation listings and systems test).

Oscillatory tests are applied to individual meas-

urement affected by bending or sloshing. The tests

consistof passing selected telemeteredmeasuroments

(accelerometers, rate gyros, etc. _ through an ap-

propriate digital band-pass filter and comparing the

amplitude of the filtered data with a specified tol-

erance. Data points exceeding this tolerance are

classified as "failures" as in the quasi-static tests.

For these test to be meaningful, a reasonably high

samplingrate of the data is required (0. 02 sec inter-

vals for bending detection). The initial data rate from

KSC data center to MSFC will not be high enough to
perform this test.

Telemetry and reference data (in various combi-

nations) are input to three basic types of tests;

a. Nominal tests

(1) Quasi-static

(2) Oscillatory

b. Correlation listings

c. Systems tests

Only a few measurements placed at well-selected

locations onthe vehicle are required to determine the

severity of bending and sloshing on a given flight test.

It is expected that these tests can be performed on

later vehicles. However, the real requirement for

this degree of sophistication is still not clearly
established.

Nominal testsconsisting of quasi-static tests and

oscillatory tests are tests of individual measurements.

The output, therefore, is time-sequenced groups of

data pertaining to measurements which failed these
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tests. If for any reason a measure_ent fails,addi-
tional information is obtained by applying additional

testing in the form of subsequent correlation listings.

Analysis of failures in a given measurement usually

involves referencing to related or redundant measure-

ments to determine if they also failed during the same

time interval. Such a comparison may yield informa-

tion regarding the validity and nature of the failure.

The purpose of the correlation tests, then, is to cor-

relate related measurements, narrow down the area

of malfunctions or deviations to a specific vehicle

system or subsystem, or identify the detected failure

as a probable instrumentation failure.

The nominal testresults usually contain a signifi-

cant number of failures caused by noise in the telem-

etered data. To reduce the number of correlation

listings, which would be difficult to interpret and are

usually of no significance, a persistence criterion is

applied to the failed data. Thus, failures are not

counted as such for correlation listing unless they

persist for a specified time (usually 3 to 6 see). It is

recognized that intermittent type failures will be

missed by this type analysis.

The correlation listing printout provides the time

interval of the measurement failure and average data

during the failure. In addition, all related measure-

ments which fail at any point during this interval are

listed. If this information is .insufficient , only then

would the analyst be required to search the quasi-static

printout. If this is needed, his task is made easier by

the correlation listing specifying which time records

are of interest.

A systems test is a means for providing additional

insight into the validity of failures detected in the

quasi static tests. These tests consist of inserting

telemetered parameters into analytically derived

equations to determine if the known physical relation-

ships between these parameters are satisfied within

some specified tolerance. The function is, as the

name implies, to analyze a given system, such as the

control system.

This analysis can be performed by determining,

amongother things, if the relationship between control

equation inputs and the resulting actuator position is

satisfied. Additional information is obtained by de-

termining if the sam of the moments and forces acting

on the vehicle is zero. Other analy.tical relations are

used in a similar manner and contribute additional in-

formation concerning the type or mode of the deviation
if one exists.

Systems tests are run only after two failures in a

given system have occurred during the same time in-

terval and for as long as the specified persistance (3

to 6 sec). Thus far, systems tests have been developed

only for environmental pressures and dynamics and

control areas, but they could be extended to other

areas if needed.

IV. SA-5 TEST RESULTS

A pilot program was designed by RCA, Burlington,

Massachusetts, under contract NAS8-11173. A sche-
matic of the data sources and the flow of the tests is

shown in Figure 1. The program was optimized for

considerable flexibility by the use of control cards.

The flight data from Saturn vehicle SA-5 were used to

study the results that could be obtained from a fully

implemented automated program. The computer time

for running the S-I stage data (approximately 400

measurements) was less than 30 minutes. Also, in

most cases the data rate for these runs was higher

than is now considered optimum. This will result in

reduced computer time for an operational case.

Typical tests were run in propulsion, flight dy-

namics, electrical, and environmental systems. Table

1 summarizes the number of measurements used, tests

performed, data rate, and required computer time.

The test time specified in Table I was for 145 seconds

of S-I stage data. Also, the correlation listing input

data rate is the same as the quasi-static test rate.

These times do not include program compilation or

printer time. It does include the read-in time for the

program control Cards and for data input.

Quasi-static tests and correlation listings were

performed on all available propulsion data (153 meas-

urements). The computer time required for these

tests for 144 seconds of flight was 3.63 minutes. The

test was conducted at two-second intervals.

The correlation listings and quasi-static tests

identified all the major areas of interest obtained from

a detailed analysis which are specified in the Flight

Test Evaluation report [ l]. Failures or d¢viations

detected and called out were

a. Failure of all engine-5 instrumentation which

was powered by the 22.5-volt measuring system.

b. Open gauges on LOX pump inlet temperature

measurements of engines 2 and 4.

c. Low initial pressure in LOX tank Number 1.

d. Low initial pressure at LOX pump inlet.

e. The control equipment supply pressure de-

cayed out of tolerance toward the end of S-I stage

flight.

f. Hydraulic source pressures were higher than

predicted.
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FIGURE 1. SCHEMATIC OF DATA SOURCES AND TESTS

TABLE i

SUMMARY OF TESTS APPLIED TO SA-5 (S-I STAGE) DATA

SUBJECT

TESTS Quasi-Static (Q.S.) Tests

Number Inlmt Number Input
of TM O.S. Computer Number of Data C.L.
Measurements Data Test Time of Correla- Rate Test

Ratv Rate (min) Measurements tions (see) Rate
(sec) (+sec) Checked (sec)

Per-

sistence Computer
Criteria Time

(sec) (rain)

Propulsion 153 0.1 2.0 3.01 142 611 2.0 S. 0 6. 0 0. 62

night Dynamics 61

86 0.1 0. 1 12. 32 69 348 0.1 1.0 3.0 2. 02
Electrical 25

28 t72 O. l i. 0 5. 0 t. 86

Environmental 143 0.1 5.0 3.41 54 t71 5.0 5.0 5.0 0.13

Sub-Totals 382 18.74 293 t302 4. 63

A persistence criterion of six seconds was applied

to the correlation listings before a deviation was called

out. A sample of the information in the correlation

listing is shown in Table II, which lists the prime

measurement and the period of flight in which it was
outof tolerance; related measurements and whether or

not they are also out of tolerance, and other pertinent

information. Results of the quasi-static tests are

available in printout form for additional evaluation

purposes if it is deemed necessary after reviewing the

results from the correlation listing. Plans are to plot

the quasi-static test results as soon as this capability
can be added to the program. This will be a definite

advantage in using the results of this test because

the shape of the deviation is always of interest from

an evaluation viewpoint.
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TABLE u

SA-5 CORRELATION PARTIAL LISTING - PROPULSION

Measurements :
Prime

Co r r elated

Temp H.S. Pinion Brg 6

Turbine RPM

Press Combustion Chamber

Press Fuel Pump Inlet

Press LOX Pump Inlet

Ternp Turbine Shaft Bearing 7

Turbine RPM

Press Combustion Chamber

Press Fuel Pump Inlet

Press LOX pump Inlet

;Temp Gas Gen. Chamber 2

Press Combustion Chamber

Turbine RPM

Press Turbine Inlet

Temp. Gas Gen. Chamber 3

Press Combustion Chamber

Turbine RPM

T/M = Telemetered

Failure Persistence

From To

(see) (see)

4 144

Pass

Pass

Pass

8 40

4 144

Pass

Pass

Pass

8 40

0 144

Pass

0 144

Pass

0 144

Pass

90 I00

Average

T/M
Value

30.3

91.4

12.2

91.4

1162

6396

1157

6742

Average

_TT/M-Rcf

oleranceJ

1.15

1.35

-I. 38

I. 35

-10.1

-3.44

-10.3

1.33

" 100OF

I0 psi

100OF

I0 psi

50OF

1 O0 rpm

50°F

1 O0 rpm

1,

2,
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LOCAL MEASUREMENTS IN TURBULENT FLOWS

THROUGH CROSS CORRELATION OF OPTICAL SIGNALS

by
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and
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SUMMARY

The cross correlation of optical signals is devel-

oped to provide the necessary inputs for the statistical

analysis of responses like rigid body motions, unsteady

forces, elastic deformations, as well as heat, mass,

and momentum fluxes. For model tests of globally or

locallygenerated turbulent fluctuations, this crossed

beam correlation is the only known method which com-

bines the necessary linear and time invariant frequency
response with a sufficiently high temporal and spatial

resolutionand is capable of withstanding hot and burn-

ing flow s.

The method estimates local power spectra, tur-

bulence scales, convection velocities, and eddy life-

times with the same data reduction procedures that

have been developed for conventional two-point meas-

urements with standard probes. In addition, an area

integral of the space time correlation can be obtained

so that "one shot" estimates of forcing functions and

true three-dimensional wave number components be-

come possible, avoiding the prohibitive by expensive

translation of point probes across the source area of
interest.

Because the optical wave length can be chosen

from any portionof the electromagnetic spectrum, the

crossed beam correlation method offers a versatility

and/or selectivitynotavailablewith any standard solid

probe.

I. INTRODUCTION

Turbulent fluctuations are used as an input for the

statistical analysis of responses like rigid body mo-

tions (control systems and vibration stability), un-

steady forces (buffeting, instrument failure), elastic

deformations (structural failure), as well as heat,

mass, and momentum fluxes (aerodynamic and base

heating, jet noise). The measurement of turbulent

fluctuations therefore represents one of the major

problems in the development of launch vehicles [ 1].

The problem with fluctuation measurements is to

find suitable instruments which have such asufficiently

high temporal and spatial resolution that the fluctua-

tions are not integrated out. In supersonic flows, ad-

ditional difficulties are introduced bv the probe shocks

which might destroy the fluctUation to be measured.

We therefore propose to measure turbulent fluctuations

optically.

II. INSTRUMENTATION PROBLEMS WITH STAND-

ARD PROBES

This paper is concerned with model tests of glo-

baUy or locally generated turbulent fluctuations in

transonic and supersonic flows with emphasis on fluc-

tuation levels which are comparable to the mean val-

ues. Table 1 classifies the turbulent fluctuations a-

round launch vehicles into three categories, each of

which has its own range of independent variables.

These ranges suggest the instrumentation and compu-

tational tools, and must be covered in dynamic cali-

bration tests. They are listedin Table 1 for full scale

Saturn IB and Saturn V vehicles. In windtunneltests,

the frequencies depend mostly on the stagnation con-

ditions (maximtlmescapo velocity) and the shear lay-

er thickness. The values of Table I are based _n the

largest models which can be installed in existing con-

tinuous transonic and supersonic wind tunnels without

causing blockage.

The record length of a fluctuation sample is given

by the smallestcorrelationcoefficients to be measured

and by the bandwidth requirements of the spectral a-

nalysis. The values in the figures of Tables I are

based on the applications presently planned.
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TABLE 1. INSTRUMENTATION AND CALIBRATION R_UIREMENTS

Type of Turbulence Flow

Convected (up-
etre_

disturbances)

Gener.ated Clobally
(vortex shedding

oscillating shocks

wake /mpingement)

_neratedLocally

(closed separation

bubbles)

Atmosphere
4kmto 15 km

ground winds

0 to 500 ft.

_Ind tunnel

wimi tunnel

Dynamic Range Center Frequencies
rms

Amplitudes: _ 15 db

Mean square
levels: i 30 db

Amplltudes: _ 15 db

Hean square
levels: 4 30 db

Amplitudes: _ 15 db

Mean square
levels: @ 30 db

Amplltudes:_ 15 db

Mean square
levels: _ 30 db

Amplitudes: _ 15 db

Mean square

levels: • 30 db

Amplitudes: _ 15 db
Nean square

levels: _ 30 db

2.10 -4 to 2.10 -2

cycles/km

I0 "4 to 10 cps

.5 to 50 cps

5 to 500 cps

10 cps to
5.000 eps

150 cps to

50,O00cps

Record Length
Y

15 mtn. to

lOhrs.

2 sec. to

5 sec.

1 mlU. tO

30 rain.

2 sec..to
sec.

5 sec, to

500 sec.

Dynamic

Cal ibrat ion

I. The average power
transfer_ H (_)_
function as

function of

frequency/and
_plltude

2, The average phase
shift _ between

each pair of data

transmitting ele-

ments as function of

frequency and ampli-
tude

3, The standard

deviations of

[a I and_as
a function of

frequency, mmpli-

rude. and record
length

All statistical response calculations require elim-

ination of the signal distortions, which have been in-

troduced by the measuring instrument. To eliminate

systematic signal distortions in the above range of in-

dependent variables, one needs a linear and time in-

variant frequency response up to 50, 000 cps in a dy-

namic range of 30 c_. Besides, the instrument must

be exposed to pressures between I and 800 mm Hg and

temperatures between 100 and 3000°K. Obviously, no

solid probe is capable of hancQing all these ranges.

Dynamic signal distortions, like timing errors,

shifts in reference (zero) levels, or phases, cannot

be corrected. They have to be kept to a minimum.

Their measurement leads to unusual extensive dynam-

ic calibrations te sts, w hich are al so outlined in Table I.

The hot wire is customarily used for limited in-

vestigations of cold subsonic flows. However, it is

well known [4] that the interpretation of the hot wire

signal is extremely difficult for the relatively high
fluctuation levels of interest.

Interpretationproblems are increasedby an order

of magnitade if other solid probes such as pitet tubes,

thin film thermometers, and piezoelectric crystals

are used in a high speed shear layer. These probes

arevery large compared to hotwires and willproduce

shock waves which not only distort the fluctuations,

but may be of sufficient strength and extent that they

will appreciably alter even the mean value properties

of the flow.

HI. FLUCTUATION MEASUREMENTS USING OPTI-

CAL TECHNIQUES

Obviously, the disturbance caused by measuring

instruments can be avoided ff the turbulentfluctuations

are measured optically [ 5]. The major disadvantage of

standardoptical methods, such as Schlieren, shadow-

graph, orinterferometrytechniques, is that the meas-

ured output depends on an integral of the flow proper-

ties along the entire light path. This must normally

extend through the entire test section while the tech-

nique required should give information on the local

conditions existing at some point within this test sec-
tion.

Local fluctuation measurements, using an optical

technique, have been made successfully using a view-

ing technique [ 6]. The basis of such a technique is to

focus the image of a powerful light source at the point

of interest in the flow. This image is then viewed at

an angle to the optical system producing it. In this

way the detector system collects only light which is

scattered from the pointof interest, and the measured
intensity can then be related to the number density of

the scattering particles as shown in Figure 1.

In the example referenced, a fog tracer technique

was employedto scattervisiblelight. Obviously, how-

ever, the useof a tracer is notnecessary if secondary

emission can be stimulated from species already avail-

able in the flow with radiation of shorter wavelength

or electron beams [ 7].

Mean value measurements with viewing techniques

are possible. However, the interpretation is very dif-
ficult because:

a) The light intensity (power/area, solid angle
wavelength interval) is modified by polarization and
extinction in the detector's field of view.

b) Scattering at large liquid and/or solid part/-

cles might contribute so much to the intensity that the

contaminations are detected rather than the gas pro-
perties.
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c} Scatteredradiationexhibits continuous optical

spectra. Isolated lines or molecular bands are mis-

sing so that a resolution into species concentration

and temperatures is very difficult.

d) Velocity measurements from Doppler shifts

have been successful on laminar flows; however, the

much higher velocities in turbulent flows could not be

measured. It appears that bandwidth damping and wave

front distortions through turbulent fluctuations of the

refractive index result in a severe loss of the hetero-

dyne signal power [ 5].

Fluctuation measurements are subjected to the

same difficulties plus an additional one, which is caus-

ed by the power-fluctuatious inside the sensitive vol-

ume [ 8]. Light is scattered not only at the position

of interest, but also at all points between this position

and the source. Thus, fluctuations of number density

at any point along this path will cause the light avail-

able for scattering at the investigated point to vary.

This introduces fluctuations in the scattered radiation

detectedwhichis not the result of turbulence. A pos-

sible solution to this problem is offered if the scatter-

ingprocess is very weak so that only a small percent-

age of the incident radiation is scattered from the path

of the incidentbeam. However, because it is the same

process which is responsible for scatteringboth on this

path and at the point of interest, this reduce s the amount

scattered into the detector system to a very small val-

ue. Thus, extremely powerful sources or sensitive

detectorswould be required merely to detect the mean

value of the scattered light. The detection of small

fluctuations superimposed on this mean value will in-

crease the power requirements by another order of

magnitude.

Most of the above problems are associated with

the scattering process and might be avoided by using

primary signals that are transmitted or emitted into

the detector's fieldofview. This leads to the "optical

cross correlation method" which measures fluctua-

tions, but sacrifices mean value information.

Two collimated beams of radiation are crossed at

the point of investigation, and the power loss of each

beam, because of its pas sage through the flow is meas-

ured with two independent photo-detectors (Fig. 2).

"- Signal I (Photo-Tube)

ovMonochr creator

r/i///////////_///_ r/////////,_/,l

Azr /

WindOWSv/s//]////]t I

UV

Discharge Tub 7 S__ Aperture Stop

J Stabilized Dlogonol Collecting

DC Power Mirror Mirror

Supply

I

_] Multiplier I

' Io::.,1: | an.
s r::on[: I :::,.r I

FIGURE 2. THE FIRST CROSSED BEAM

CORRELATOR

Each detector alone yields only an integrated ef-

fectalong theentire beam path. However, succeeding

sections of this paperwill indicate how forming across

correlation between the two detector signals removes

the unwanted portions of the signals and yields local

information about the turbulent properties instead.
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An additional interesting possibility offered by the

technique is that of measuring the correlation between

either different thermodynamic propertie s or different

species concentrations. This, in principle, can be

achieved by arranging one beam to be sensitive _) one
property, while the second detects fluctuations of the
other.

The following sections give the analytical formu-

lation of the optical cross-correlation method. For

reasons of convenience, the optical signal is identified

with lightintensity. Very similar consideraUons hold

for wave lengths or, in fact, any signal that c_n inte-

grate flow properties such as ultrasonic waves along

the line of sighL

IV. ANALYTICAL DESCRIPTION OF THE OPTICAL

CROSS CORRELATION METHOD

The basic experimental proct_iure can best be de-

scribedwith the aid of Figure 3. A turbulent flow re-

gionis supposed to be containedwithin the area ABCD.

The mean velocity of this flow is assumed to be per-"

pendicular to the plane of the paper, in the Z direction.

DetK_

a_

_mr_ St

E

m

i
II

FIGURE 3. SCHEMATIC DIAGRAM OF CROSSED

BEAM CORRELATION TECHNIQUE

S 1 and Sz are sources of electromagnetic radiation

whichpass collimated beamsof radiation across the

flow region. The intensity of the beams, after their

passage through the flow, are registered by detectors

D 1 and D2, respectively. The coordinate system will

be such tha_ the beam S1D 1 travels along the line (x,

y0,zo), while s2r__ travels along (z0,Y,Z0).

Let us consider initially the beam S1D 1. The loss

of intensity of this beam in passing through a small

segment of the flow of length dx will be directly pro-

portional to both the intensity of the beam incident on

the segmentand to the segmentlength. Thus, this loss
can be written

dI(x, y0, z0) = -KI(x, Y0,z0) dx,

where K is a constant of proportionality for which we
shall coin the term "extinction coefficient." Wenotice

here that K is usec_ to account net only for true absorp-

tion, that is, classi.cally at least, the conversion of
electromagnetic radiation into other forms of energy,

but also for any other process which may reduce the

beam intensity as seen by the detector. In many ap-

plications, other intensity-reducing phenomena can be

considered negligible, and the two terms then become

synonymous. However, with the narrow beams to be

used in the present application, as well as possible

applications to "dirty flows," other processes might

conceivably become appreciable, and the term extinc-
tion coefficient is used to cover those eventualities.

Electromagnetic theory shows that the value of K

is a function of the local thermodynamic properties.

Throughout this paper, for the sake of generality, we
shall speak of fluctuations of the extinction coefficient.

However, these fluctuationswill always reflect changes
of a flow property so that the terms should be con-

sidered synonymous. Because all thermodynamic

properties will be functions of only position and time

in a turbulent flow, the extinction coefficient will be

similarly dependent. In addition, the value of K will

also be a function of the wave length of the radiation.

For the purpose of this discussion, however, we shall

assume the radiation to be monochromatic, and de-

pendence will not be explicitly shown.

Integrating along the entire path from the source

to the detecter, we can write the intensity received at

the detector, DI, at some arbitrary time t as

- fK(x, Y0,z0,t) dx,
II(t) = I 0 e (1)

where I 0 represents the source intensity(energy per

area, solid angle, time and wave length interval).
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If the extinctioncoefficientis nowwrittenasthe
sumofits time-averagedmeanvalueanda fluctuating

component, i.e.,

K(x, Yo, zo, t) = <K> * (x,Y0, Z0)+k(x,y0,zo,t), (2)

equation (1) can be written

It(t)

{3)

We now arrange the value of the extinction coefficient+

(i. e., choose a suitable wave length for the radiation)

so that its integrated fluctuation becomes small rela-

tive to one.

f k(x,Y0,z0t) dx<< 1
(4)

This assumption is not very restrictive because the in-

tegrationis to be performedover fluctuations that will

be to some extent spatially incoherent. Thus, the value

will always tend to be small, even if the first integral

in equation (3) is not. Equation (3) can be written

11(0

=Ioe
- f<K> (x, Yo, Zo)dx_. l _ fk (x,Yo, Zo, t)

(5)

Averaging this equation with respect to time, we ob-

tain the time-averaged value of the intensity at the de-

tector.

<11> = I o e - f<K> (x,Yo, Zo)dx . (6)

Thus, equation (5) can be written

i1(t)=<i1> Q-fk(x,yo, zo, t)dx). (7)

The fluctuating signal, relative to the mean value at

the detector,is

I_ (t) = I1 (t) - <I1>

= <It> fk(x,Yo, zo,t) dx. (8)

1 /T* <K>= _ K(t) dt
0

If a similar analysis is now performed for the second

beam of radiation S2I_, which is assumed to be along ,

the line (xo, y , Zo), the fluctuatingsignal at this detec-

tor is given by

I2' (t)= <12> fk(xo,Y,zo, t) dy. (8')

Forming next the productof these two signals and sub-

sequently estimating the time-averaged value of tl_is

product G(x0, Y0, z0), we obtain

T
l

G(xo,Yo, Zo) = _ f It (t) I_ (t) dt=
0

T1
<It> <12> -_'f f fk(x, Yo, zo, t)k(xo, y, zo, t) dx dy dt.

0 y x (9)

Next, reversing the order of integration, this can be

written

G(xo, Yo, Zo) =

<11> <I2> f f
y x

T
1

f k(x,Yo, zo, t) k(xo, Y, zo, t)+dtdxdy.

o (1o)

• Thus, to summarize, taking the fluctuating portions

of the signals from the two detectors and measuring

their covariance, we obtain the result represented by

equation ( 10).

V. SPATIAL RESOLUTION OF COVARIANCES AND

MEAN SQUARE VALUES

Let us now proceed to review this result in more

detail by considering initially only the inner integral,

i.e.,

T
1

Rk= _[ f k(x, Y0, z0, t) K(x0, Y,z0,t) dt. (11)
0

This term, obviously, is merely the covariance exist-

ingbetween the extinction coefficientfluctuations at the

points (x,Y0, x0) and (x0, y, z 0) . If these two points are

separated in space by a "large" distance (i. e., one or

both are far from the point of beam intersection) ,

then the turbulent fluctuations, and hence the fluctua-

tions of extinction coefficient at the points, will in all

probability be mutually random. Hence, the value of

expression (11) for two such remote points will be

zero, and these fluctuations will not contribute to the

value of G(x0,Y0,Z0). In fact, rewriting expression

( i l) in terms of the root mean square values of the

fluctuations at the two points and a space correlation

coefficient R(x,y) x0,Y0, Z0, i.e.,
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" R k = (x, Y0, ZO) k2(x0,y, z0) R(x,y), Xo, Yz),_z °

(11,)

indicates that only points contained in the correlated

area around the point of beam intersection contribute

to G(x0,Y0,Z 0). Thisis because once one point is out-

side this area R(x,y) will be zero. Judging from

previous turbulence investigations, R(x,y) will de-

crease continuously as the point _eparation is in-

creased, and predominant contributions to the space

integrals of equation (10) will come from positions

close to the beam intersection point.

In an ideal situation in which R(x,y)_is a delta

function, havinga finite value onlywhen the points con-

sidered are coincident, then equation (10) becomes

G(x0,Y0, Z0) = <Ii> <I_> k'¢ (x0,y0,z 0) , (12)

and We see that the measured product of the two de-

tector signals is directly proportional to the intensity
of turbulent fluctuations at the point of beam intersec-

tion.

Alternately, if it is assumed that within a typical

eddy length around the intersection point the turbulent

intensity does notvary appreciably, equation (t0) be-
comes

G(xo, Yo, Z_ = <I1> <I2> k2(xo, Yo, Z_ +f fR(x,y)dx dy.

Yl x (12')

Once more the measured covariance is directly pro-

portional to the intensity of the fluctuations although

the absolute value is additionally a function of the tur-

bulent scales. In fact if the variables are separable,

i.e., if R(x,y) can be written the double integral of

R(x,y) = Rx(X-x0)Ry(y-yo) ,

equation (12') merely reduces to the product of the in-

tegral length scales in the x and y directions. These

length scales are

oo oo

:f .<x++ f.(+ ++<x

Direct interpretation of the measured quantity

G(x0,Y0,Z 0) is still possible even when the intensity

of the fluctuations varies appreciably across the cor-

related area, as long as the variable separation as-

sumption is still reasonable. In this case equation
(10) can be written

* Hereafter, the subscripts x 0, Y0, z0 are suppressed.

G(xO, y_ Zo)

J-

= <Ip <I2> f (Xo,Y i z 0) Ry(y-y_ dy.
Y

• (x, Y0, z Rx(X-X 0) dx .
X

Each separate integral can be regarded as the product

of the average rootmean square intensity over an inte-

gral length scale and the length scale itself. To ob-

tain the intensity from the measured quantity, it is

necessary to divide by the product of the integral length
scales in the beam directions.

Apparently a good approximation to the turbulent

intensity can be obtained either in the case where the

turbulent scales are small (i. e., the delta function ap-

proximation) orwhen they are large, if the separation

of variables represents a good assumption. The case

not covered, that is, large scales where separation

cannot be assumed, is unlikely to occur. Large lateral

scales indicate that there are relatively few wave num-

ber components involved in the turbulent processes,

while separation of variables assumes that the wave

number components in the x and y directions do not

interact appreciably. Thus, the case not covered

would demand a strong interaction between a few wave

number components that is not communicated to other

regions of wave number space. That such a process

can exist seems very unlikely.

VI. TWO-POINT SPACE TIME CORRELATIONS

Let us next consider the result obtained if one

beam is displaced from the other in the streamwise

(Z) direction, and, in addition, a time delay, 7, is

introduced between them before estimating the time-

averaged cross product.

If this result is denoted by G(xo, Y0,Z o + Az,_ ),

the result can be written formally by inspection of equa-
tion ( 10).

G(x_y_z0 + AZ,T ) =

T

I S k( X,Yo, Zo, t) k(% y, Zo + Az, t + _)dt dx dy.<.re ,Ie f f ¥
y z 0

(13)

The interpretation of any one term within the double

space integral is straightforward. It is the cross cor-

relation existing between the points (x,Y0,Z 0) and (x0,

y, z 0 + Az) for the particular value of time delay T.

The double space integration represents the fact that

what is actually measured is an average of such cor-

relations for all points on the beams contained within
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the correlated region surrounding their line of mini-

mum separation.

The way in which the result is strongly weighted

toward the properties of fluctuations at points close to

this line of minimum separation is most clearly appre-

ciated by the definition of a cross-correlation coeffi-

cient defined

k(x, Yo, zot) k (xoY, Zo+ Az, t+v)

R(x,y, Az,T) ---

_]k2(x,yo,zo) _]k_(xo,y, zo)

(14)

Equation (13) can then be rewritten

G(xo.yo. z 0 + AZ. _-) =

<I/><I_ f f(k'(x,yo, zo) k2(xo.Y.Z,+Az')) _

yx

R(x,y,Az,7) "dx dy.

(15)

Let us now write this correlation coefficient as the

product of two functions

R(x,y, Az,T) = R(x,y) R'(x,y,Az,_) o (16)

Here R(x,y} represents the space correlation coeffi-

cient existing between the points (x0,Y,Z 0) and (x,y0,

z0}. R'(x,y,Az,_} is a function which relates this
coefficient to the cross-correlation coefficient between

the points (x0,y,z 0) and (x, Y0, Z0 + Az) for the value

of time delay T. AS long as R'(x,y,Az,_) is not a

very rapidly varying function of x and y over the region

for which R(x,y) is finite, the double space integral

of equation (15) will receive large contributions only

from pairs of points for which R(x,y) is large, that

is, points close to the line of minimum beam separa-

tion. This spatial resolution is even stronger if this

line is in a region of high turbulent intensity because

the intensity terms contained in equation (15) will ad-

ditionally strengthen the weighting.

In view of these considerations, we can rewrite

equation (i6) in the form

R(x,y,Az,T) = R(x,y) R'(Az,T) , (17)

neglecting theweak (x,y) dependence of R'(x,y,Az,_')

over this limited range completely. Equation (15) can

then be written

G(xo, Yo, Zo + AZ,T) =

<I1> <I2> R(Az,'r)f f(k2 (x, y0, z0) k2 (x0, Y, z0 + Az)} _"
y x'-

R(x,y) dx dy (18)

The significance of R(Aztv) can now be made ap-

parent byconsidering the special case of equation (i7)

for which x = x 0 and y = Y0 so that R(x,y) = t. Thus,"

by definition of R(x,y,AZ,T), R(Az,T) is the cross-

correlation coefficient existing for time delay T be-

tween the points (x0, Y0, z0) and (x0, Y0, z0 + Az). This

is the parameter normally measuredin subsonic flows,

using hot wire anemometers, from which the convec-

tion velocity and eddy lifetime is estimated.

We are now ina position towrite down, by insepc-

tions, some special cases of equation (18) andtodls-

cuss how additional parameters of the turbulent field

can be estimated by combination of the measured quan-

tities represented by these equations.

a. Convection Velocity and Eddy Lifetimes.

Consider first the particular case of equation

(t8) corresponding to zero beam separation and time

delay (i.e., Az = _- = 0). This can be written

G(x0, yo zo) =

/f (k 2-R(x,y) dxdy.
<li> <i2> 2(x, Y0,z0) k2 (x0,Y, z0

(19)

This is merely an alternative form of equation (i0)

from which a good estimate of the turbulent intensity

can be obtained.

Comparing equations (18) and (19), we find

G(xo, Yo, z 0 + Az,'r)

G(xo, YO, zo)
= R(Az, T) (20)

From previous discussion, however, we have identi-

fied R(Az,v) as the cross-correlation coefficient.

From the variation of this parameter as a function of

beam separation and time delay, therefore, the con-

vective properties of the turbulence canbe estimated.

Thus, equation (20) indicates that this correlation co-

efficient can be found experimentally by dividing the

covariance measured between the detecter signal s when

the beams are separated in space and in time bythe

covariance measured for zero separation in both space

and time.

b. Integral Scales of Turbulence

Following equation (i2) the integral length

scale in z direction can be expressed by
oo

L z = f R(Az) dz,
-¢o
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where R(Az) is the space correlation coefficient.

Equation (20) then indicates immediately how the re-

quired space correlation coefficient is measured. Ob-

viously, space scales in the remaining two directions

can be similarly estimated by reorientation of the

beams. Further, as we have seen previously, it is

these scales which we require to relate the measured

value of G(x0,Y0,Z 0) to the value of the turbulent in-

tensity.

c. Power Spectra

Itisawell established fact that the frequency

spectrum and auto-correlation functions of a signal

constitutea Fouriertransformpair. Thusm iftheauto-

correlation function of a signalis known, its frequency

spectrum can be determined, with the converse also

being true.

Further, the auto-correlation coefficient, (i.e.,
the nondimensional form of the auto-correlation) is a

second special case of the cross correlation coeffi-

cient, namely, its value for zero spatial separation.

G( x0,Y0,zbv)

R(o,v) = G(x0, y0,zo) •

The frequency spectrum can then be determined by

Fourier transformation of the resulting function. If

A(w) denotes the spectral density at freqmm_ w, then

A(w) can be written

ao

-iwv
Alw)- i f RIo,v) e dT.

477 

Thus, the spectral content of the signals can be esti-

mated from the measured variation of G(Xo, ybz_T)

as a function of the time delay T •

VIL AREA INTEGRALS OF THE SPACE TIME COR-

RELATION FUNCTION

In the previous sectionsof this paper, we have in-

dicated the way in which the various quantities meas-

ured, using a crossed beam correlation system, can

be combined toyield estimates of the pointwise turbu-

lentproperties. HoweVer, ithas become apparent that

the technique in practice measures an integral over a

correlation area surrounding the point of interest, and

point properties are obtained only with the aid of some

simplifying assumptions. In many important appli-
cations the space integrals over correlation areas

are wanted instead of twodpoint correlations. In these

cases the integration along the beams is wanted, and

the simplifications are unnecessary.

a. Forcing Functions

• Let us consider theproblem of estimating the

mean square load on an infinitely long fiat plate due to

a distributed pressure field of the type found under a

turbulent boundary layer. If the pressures are repre-

sented by p(x,y, t), then the load at time t is

L(t) = f fp(x,y,t) dy dx.

xy

We can obtain the mean square value of this load and

its spectral distribution from its auto-correlation

functions. This function can conveniently be written

in the form

L(t) L(t+v)

= f f f f p(x,y,t)p(x+c,y+ll,t+r) d_d_dydx. _ (21)

xy_

The contribution to this integral of a small area around

the point ( xo, Yo) is

L(x0, Y0, T )

= f f_(x0,y0,t)p(x0+ c, y0 + 7, t+7) d_ de. (22)

It is apparent therefore that even to estimate the con-

tribution of a small region of turbulence to the total,

we need a knowledge of the cross correlation existing

between the fluctuations at one point in the region and

all other points with which a correlation exists.

Obviously, the exact evaluation of equation (22)

from point measurement: is not physically possible.

Normally, simplifying assumptions are employed to

reduce the amount of data required. For example, if

complete homogeneity of the turbulent field is assumed,

a line of transducers extending in one direction over
the correlation area will suffice. Even in such a case

the amount of data reduction required to obtain just one

value of the auto-correlation functionis still very large.

Consider nextthe comparison of equation (22) with

equation (13). By putting Az = o, rewriting the space

variables in equation (13) in the form

X = Xo+£

y = yo+_ ,

and replacing the time integral by the overbar notation

of equation (22), we Obtain
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G(xo,YO,Zo,_ ) =

<It> <_2> f fk(xo+_, Yo,zo, t)k(xo, Yo,Zot+T) dcd_?.
e (23)

Obviously, there is a strong resemblence and, with

one additional assumption, the functional similarity

can be made complete. We assume that there exists

one direction along which the turbulence is homogen-

eous. Let this be the x direction so that we can write

k(x0+E, y0, z0, t)k(x0,Y0+rl,z0,t+7) =

= k(xo, Yo, Zot)k(x o-E, YO +_,zo,t + T) "

In this case equation (23) becomes

G(xa, yo, ze,_) =

= <It><Iz> fJk(xe, ye, zo.0k(xo-c, yo+_, zo, t+T) d_dlT, (24)
_e

which is now exactly the wanted point load L (x0,Y0,_)

Itis to be emphasized immediately that, although

we have demonstrated this similarity in terms of a

specific example, chosen more for its well-known na-

ture rather than its particular applicability to light ab-

sorption measurement, there is a wide range of prob-

lems in which integrals over a correlation area or vol-

ume need to be evaluated. In Lighthill's [li] theory

of aerodynamic noise production, an integral of a stress

tensor over a correlated volume is involved, while

Williams [ 12] has shown that this "should be replaced

by an integration over the correlation area normal to

the radiation direction in association with an integra-

tion over the moving axis time scale, whenever Mach

waves are under study." F. Krause [3] showed re-

cently that the forcing functions of dangerously large

skinvibrations below free shear layers and oscillating

shocks can be obtained from the area integral of the

pressure cross correlation function. For the easier

case of homogeneous turbulence, A. Powell [13] has

shown that the generalized forces can be obtained di-

rectly from the wave number components of the pres-

sure fluctuations which will be discussed in the sub-

sequent section.

These considerations indicate that not only can we

obtain estimates of pointwise turbulent properties from

the crossed beam correlation method, but, with the

assumption of flow homogeneity in only one direction,

the directly measuredquantities are those required in

situations where we wish to estimate the strength of

the turbulence as a forcing function. This is normally

the practical application of any turbulence investiga-

tion. In cases where the forcing functionis represent-"

ed by an integral over a correlated area, the cross

correlation of the detector signals is exactly the re-

quired quantity. If a volume integral is involved, the

technique performs two of the space integrations auto-

matically, while the third is obtained by successive

beam displacement. The reduction in experimental

effort and data reduction, compared with that which

would be necessary if pointwise measurement were

employed, is obviously still very considerable.

b. Measurement of the Three-Dimensional Wave

Number Spectrum

We shall now conclude this section with con-

sideration of the way inwhich the crossed beam corre-

lation technique can be employed to measure a very

fundamental and useful property of any turbulent field,

namely, its three-dimensionalwave number spectrum.

Fourier or wave number components have to be

used to resolve the energy of the turbulent fluctuations

into a number of additive components or "energy lev-

els" such that the general concepts of statistical mech-

anics might be used to infer general results for com-

plicated flows from simple model tests. Quoting Bat-

chelor [ 14], Fourier's analysis corresponds to a gen-

eral resolution into components of the motion of differ-

ent linear size. Italso gives a definite meaning to the

idea of the different degrees of freedom possessed by

the fluid. Large scale and small scale components of

the motion are not attached to limited portions of the

fluid in the way that different degrees of freedom of a

simple gas are attached to different molecules; never-

theless, we can thinkof turbulent motion as consisting

of a large number of different sized eddies or wave

number components which make additive contributions

to the total energy and which interact with each other

in a way demanded by the nonlinear term in the equa-

tions of motion.

The problem with true wave number components

is that they represent a mean square "amplitude" av-

eragedover awave front of infinite size. This cannot

be measured with point probes since they cateh only

the fluctuation along one line. Because the crossed

beam correlation provides an area integral over a plane

"wave front," however, it can be used to measure a

true three-dimensional wave number component prop-

agatednormal to the beam intersection plane, that is,

along the line of minimum beam separation.

We consider the definition of wave number com-

ponents as given by Hinze [4]. Using the notation of

this paper, and, assuming the process to be statisti-

cally stationary, we can write
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E(k1,1_,k+)

1
- 8ay--- f f _ v(x0,Y0, z0t)v(xc+_,Y0+_,z0+_, t)

EXP E- i(k!E+ I¢_.+k_)]d_ d_.d_,

where v ( x0, Y0, z0, t) and v(x 0 + _, Y0 + _ z0 + _, t): repre-

sent turbulent fluctuations occurring at time t atthe

points (x0,y0,z 0) and (xo+ _, y0+T], z0+ _ ). The
terms kl, k z and k 3 represent wave number components

in the x,y, and z directions, respectively.

Consider now the value of E(o,o,k 3) given by

E(o, o, kz) =

t
f f f v(xe, yl, zll, t)v(x, 0 + c,y 0 + _,Zll + _' ,t) e -iks_

Combining equation (13), (putting T = O), the defini-

tions of _,_, and g, i.e.,

X= XO+E

y = y0+_

Z = Zo+_,

and assuming How homogeneity in the x direction, this

equation can be written

I
E(°'°'k3) - 8_- fG(x0,y0,z0+ Az) e -ik3Az dz.

We have already seen that O(x0, Y0, z0 ÷ Az) is merely

the covariance between the detector signals when they

aredisplacedbyadistance Az. Thus, a number of de-

terminations of this covariance as a function of Az will

permitthe integrafiontobe performed, and the k s wave
number spectrum can be determined. Also, reorien-

tatlonof the beamswfll allow other spectra, E(kl, O,O)

and E (o, k 2, o), to be determined, although to determine

all three, we do need two directions of homogeneity.

CONCLUSIONS

Our discussion has shown that the cross corre-

lation of optical signals does not strictly yield point

properties of the flow, but rather an average value of

such properties over a correlated area surrounding

thepeintof beam intersection is measured. However,

the strong weighting of this average toward the values

at Re point of beam intersection indicates that accept-

able spatial resolution of t_rbulent properties will be
obtained.

Although there is a strong tendency to attempt to

characterize a turbulent field in terms of such proper-

ties, this is not always necessary or experimentally
desirable. Whenwewish to evaluate the effectiveness

of a turbulent region as a forcing function, a consider-

able amount of integration of pointwise properties over

a correlated region is normally necessary. The bulk

of information necessary to make such an evaluation

from peintwise determined quantities is very consider-

able, andeertain simplifying assumptions are normally

introduced to reduce it to a manageable amount. The

crossed beam correlation method, on the other hand,

performs a considerable amount of the required inte-

grationautomatically, and the measured quantities of-

ten resemble very closely the required integrals.

Thus, exact evaluation of the effects of a region of tur-

bulence are much more practical using this method

than would be the case ff only point probe information

were available.

Itappears that for those flowswhere point probes

cannotbe employed the crossedbeam correlation tech-

nique offers for the first time a methodfrom which lo-

cal statistical properties of the flow can be estimated.

In those problems in which the effects of a region of

turbulent flow are of interest, the technique offers a

comparatively direct method for evaluation of the re-

quired functions, offering an advantage over p0intprobe
methods.

Finally, it is emphasized timt the radiation to be +

ab serbed canbe chosen from any portion of the electro-

magnetic spectrum. Thus, aversatility and/or selec-

tivity is offered by this method which is not available

with many standard measuring systems.
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HOT WIRE TECHNIQUES IN LOW DENSITY FLOWS

WITH HIGH TURBULENCE LEVELS

by

A. R. Hanson,* R. E. Larso_, and F. R. Krause**

SUMMARY

Large turbulence levels in the separation and re-

attachment regions of free shear layers produce severe

heat fluxes and acoustical loads on launch vehicles.

The direct investigation of these phenomena requires

an instrument that combines a high temporal and spa-

tial resolution with a highty linear and time invariant

frequency response, iThis paper summarizes extensive

static and dynamic ialibratinns of modern hot-wire

systems that might be used in low density flows with

high relative fluctuztion levels.

A review of the hot-wire heat loss equations indi-

cated that a time invariant frequency response can be

obtained at high turbulence levels only if the probes

axe operated at constant temperature. The static cali-

bration of two modern constant-temperature hot-wire

systems (a modified Kovnsznay circuit and the DISA

anemometer) combined with hot-wire and hot-film
senRors showed: _-_

1) Significant changes of the calibration constants

at low densities (approximately 1 percent of atmos-

pheric).

2) A large increase of wall proximity effects at

low densities. At a pressure of approximately 0. 1

atm, the effect of a wall at room temperature is de-

tectable at a distance of roughly iO00 hot-wire radii.

lower at atmospheric density, while it is two orders

of magnitude lower at low densities. This means that

the results can be only of a qualitative natare.

To obtain measurements which warrant a quanti-

tative cross-correlation analysis, it is proposed to:

1) keep the density levels always above 10 per-

cent of the atmospheric value.

2) modifythe electronic circuits to allow precise

neutralization of reactive impedances, which Limit the

maximum usable frequency.

3) simulate ahigher stream velocity by replacing

the hot wire by a hot film with an internal coolant flow

which can be controlled.

4) lower the thermal inertia of the film by de-

creasing the film thickness and using new film mate-

rials with higher Cw/_ values.

DEFINITION OF SYMBOI_

Symbol Definition

M u/a roach number

U stream velocity

a local sound speed

3) Considerable changes occur in the slope of the p

wire-resistance temperature relation, especially at

low temperatures. ,These changes are attributed to T e
small impurities and the mechanical drawing process
which make it necessary to repeat the resistance-

temperaawe calibration for each batch of wire. T
t

The dynamic calibration showed that the temporal T
W

resolution is insufficient. Relative to the center fre-

quencies of observed narrow-band components, the

cut-off frequency (3 db down) is an order of magnitude

density

equilibrium (recovery) temperature

of unheated wire

total temperature

average hot-wire temperature

T
e

-_t-t (temperature recovery ratio)

* This work was partially performed by the Applied

Science Divisionof Litton Systems, Inc., under Con-

tract NAS8-11299.

** George C. Marshall Space Flight Center

_t

C
P

k

viscosity of air at stagnation point

specific heat of air

thermal conductivity oi air
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Pr

Re

D
W

l

A
W

I

R

H

Nu.

h

Kn

CP_ (Prandtl number)
k

pUD

w (Reynolds number based on wire

diameter)

diameter of wire

length of hot wire

D ! (surface area of hot wire)
W

+ i wire current

<l_p + r wire resistance

12 R total rate of heat loss from hot wire

hD

w (Nusselt number)
k

H

A (T w - T e)W

(heat transfer coefficient)

k-
_-- (Knudsen number)

W

k mean free path

One-point correlations would show the structure of the

sublayer and the spectral content, whereas two-poin t •
correlations are needed to disentangle sound radiation

and turbulent convection. All these measurements re-

quire a linear and time-invariant instrument with a

high temporal and spatial resolution, such that a rela-

tive cross correlation estimate can be obtained.J3]

without integrating out the fluctuations which are to be

correlated.

The hot wire is the only instrument that has been

applied successfully to turbulence investigations in

shear layers [4]. However, the proposed measure-

ments are unusual since the rms levels in the recircu-

lation zones of interest might very well be so large

that they are comparable to the mean values. It is

well known [ 5] that the interpretation of hot-wire sig-

nals is then difficult, even at atmospheric densities.

The densities around transonic and supersonic wind

tunnel models are sometimes much lower than atmos-

pheric, so additional frequency response problems are

to be expected. This paper gives the results of care-

ful static anddynamic calibrations of modern hot-wire

systems in low density flows with high turbulence

levels. These results may be useful in future investi-

gations of separating and reattaehing free shear layers.

II. REVIEW OF WIRE HEAT LOSS IN

TURBULENT FLOWS

I. IN TR ODUC TION

There is anurgent need for a technique which will

allow experimental determination of turbulent proper-

ties of both attached and free supersonic shear layers.

The prediction of heat, mass, species, and momentum

fluxes in the environment of rocket launch vehicles and

a more detailed understanding of aerodynamic noise

production by supersonic jet and rocket exhausts, to

mention only two, both require a knowledge of the as-

sociated turbulent field.

In particular, flow phenomena and heat transfer

have been studied behind ablunt trailing edge in a two-

dimensional, supersonic stream (M = 3) with a turbu-

lent forebodyboundary layer [ 1]. Extensive pitot tube

traverses, hot-wire traverses, and heat transfer

measurements suggest that a new type of shear layer

might exist below the base recirculation zone, and

that "resonance vibrations" might be superimposed

[ 2], such that the current models of base heating and

base pressure fluctuation may have to-be modified.

The heat loss equation relates the flow properties

Such as velocity, pressure, and temperature to the

electrical power dissipated in a heated wire, which is

detectable from measurement of the wire resistance

R w and wire current I.

For steady and incompressible flows, the heat

loss equation was established by King [ 6]. His work

has been continued by the authors cited in References

7 through 14. Their findings affirm the approximate

heat loss relationship

Nu =A +B. Re I/2= 0.32+0.43Re I/2
m _ (1)

where Nu m is the Nusselt number based on uncorrected
measured values of heat loss H.

I z R
H w

Nu = - (2)
m 7r_ k t (T w- T e) 7r_ k t (T w- Te)

In this paper the empirical relation (equation 2 2 is

written in terms of the mass flux component p U as

The surest way to arrive at definite conclusions I 2 R
w

about the suspected new type of shear layer is through T - T
a correlation of velocity and temperature fluctuations, w e

A' + B' (p U)1/2. (3)
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In this case, the empirical factors

A'=A 7r! k t (4)

and

B'= B 7rl kt_ _5)

depend on temperature only. In equations (1) through

(5), all quantities are to be taken as averaged in time

and over the length of the v_ire. Moreover, A and B

are not accurately given by theory, and must therefore

always be obtained experimentally [ 5].

Equations (3) through (5) are the basis of the

usual hot-wire applications. Unforamately, they will
be erroneous at low densities, where the mean free

path X becomes as large as the wire diameter

(Kn=_/_w_ i) [15] through [18].

The density behind the present two-dimensional

base model [ 1] is so low that slip flow effects have to

be considered. The operational regime is shown in

Figure 1. Therefore, a careful calibration study was

conducted with emphasis on low pressures. The re-

sults are given in Sections IV and V.

= o.i¢
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HOT-WIRE OPERATIONAL REGIME IN

THE BASE FLOW REGION

The values of A' and B' are customarily obtained

in calibration ducts with a smooth flow, where the

fluctuations are very small. The results of this "static"

calibration are then applied to fluctuation measure-

ments, where neither the frequency nor the rms levels

is small. Analytically, this procedure amounts to the

assumption of a "quasi-steady" heat transfer; that is,

the velocity fluctuations
T

lim 1
(p U)' = pU(t) - T--_ T f p U(t)dt

o

= p U(t) --_,

(6)

the current fluctuation

i = I(t) --I, (7)

and the resistance fluctuations

r = R - R (8)
w e w

are treated as differentials. Applying the differentia/

operator

d= (a-_w w=_ w p=I

(9)

to the left-hand side of equation (3) we obtain the dy-

namic response relation

--2 R
I -- w

_ 2 (Tw-T )r w
(T w T e) e _%,/O'T w

2IR

+ w i- B'
- T 2_ (pU)'" (10)

w e

A direct measurement ofmassflux fluctuations is then

possible in two alternate ways

1) Thewire is operatedatconstant current (i=0).

The mass flux fluctuations are then calculated from

the resistance fluctuations r w.

2) The wire is operated at constant resistance

(rw=0) , that is, at constant temperature. The mass
flux fluctuations are then related to the current fluc-

tuations i.

Hinze [5] has shown that the constant-temperature

method is. really superior for the following reasons:

1) The values of A' and B' are true constants

even for large fluctuations.

2) The thermal inertia (effect of finite heat ca-

pacity) can be reduced such that the quasi-steady re-

sponse relation may be applied at frequencies which

are one to two orders of magnitude higher than those

that would give the same dynamic error in an uncor-

rected constant-current hot-wire set. Therefore, the

quasi-steady response relation is mostly used on

constant-temperature sets without correcting for

thermal inertia.

3) The nonlinear signal distortions of the.

constant-temperature method are about three times
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smallerthanthoseontheconstant current set. More-

over, it is possible to use two squaring circuits whose

amplitude characteristics balance the nonlinear be-

havior of the hot-wire response, shown by equation

(3) such that a practically linear relation between
output voltage and velocity can be realized even for

relatively large fluctuations.

4) The wire is self-protecting, since catastro-

phically high temperatures are avoided by its mode of

operation.

In view of these considerations, the present investi-

gations have been performed with constant-

temperature systems.

The above heat loss relations are restricted to

incompressible flows, in compressible shear layers,

the entropy mode will addnew temperature fluctuations.

However, the Mach number of the recirculated flow

seldom exceeds a value of 0.6; therefore, it is rea-

sonable to assume that velocity fluctuations produce

a much stronger signal than temperature fluctuations.

A testof this assumptionin the base recirculation zone

requires the separation of temperature and velocity

fluctuations. Kovasznay [ 9] has shown that this may

be accomplished by operating the hot-wire at three

overheats. When the overheat is very small, the wire

is predominantly temperature sensitive; but as the

overheat is increased, the response to velocity fluc-

tuations alsoincreases. The velocity and temperature

fluctuations might thus be separated by comparing the

hot-wire signals for the different overheats.

IlL FACILITIES

The electronic equipment required for constant-

temperature operation is much more complicated than

that Used in the constant-current application, such that

the constant-temperature method is usually used only

when large fluctuations have to be recorded. In fact,

the constant-temperature circuits have been plagued

by unstable oscillation, and only after World War H

have carrier wave systems with sufficiently stable

feedback become available which give the equipment

adequate stability [5].

A. Circuits

Mean velocity measurement in the base recir-

culation zone and probe calibrations were initially

performed with a constant-temperature manually

balanced set (Fig. 2). Voltages were accurately

measured with a Fluke Model 821A precision differen-

tial voltmeter which can measure voltages to :L 0.01

percent (of 10 _V. ) Probe resistances were meas-

uredwith a Leeds and NorthrupModel 4760 Wheatstone

bridge which has a reading accuracy of i 0. 01 ohm.

R

FIGURE 2. SCHEMATIC OF MANUALLY BALANCED

HOT-WIRE BRIDGE

Fluctuating velocities were measured by a

constant-temperature anemometer with a frequency

response from dc to approximately 15 kc/sec, the

instrument was constructed according to a circuit

developed by Kovasznay [20]. The basic features of

this circuit are shown in Figure 3. An electronic con-

trol circuit senses bridge unbalance, and through

negative feedback adjusts Iw to balance the bridge

against fluctuations in mass flux pU over a frequency

range of 0 to 15 kc/sec. The linearizing circuit per-

forms two squaring operations, with zero offset, to

make ELO proportional to p U. This linear relation

is particularly convenient for calibration and measure-

ment.

F

FIGURE 3. HOT-WIRE CIRCUIT FOR CONSTANT-

TEMPERATURE OPERATION WITH

LINEARIZED OUTPUT

Karlsson [ 211, who used Kovasznay's apparatus,

has reported its frequency response as approximately

flat from dc to 17 kc/sec. Measurements made on the

present equipment confirmed the flat response from

dc to about 15 kc/sec. In this work, voltages from a

signal generator were injected into the hot-wire bridge.

Further evidence of the response of the present equip-

ment has been obtained from some shock tube studies

of vortex shedding from a circular cylinder carried

out by Hanson and Strom [22]. Figure 4 shows typical

records of the signal from the hot-wire anemometer

when the probe is placed in the wake of the cylinder.
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CYLINDER DIAMETER, d = 0.022 in.

(Modified Kovasznay Circuit; x'is Distance of Probe

Downstream of Cylinder Axis).

FIGURE 4. HOT-WIRE TRACE SHOWING VORTEX

SHEDIKNG FROM CIRCULAR CYLINDER

IN SHOCK TUBE.

These records were madewith aModel 1108 Honeywell

Visicorder equipped with moving coil galvanometers.

Although the flat galvanometer response extends only

to 5 kc/sec, it is evident from Figure 4 that the hot-

wire anemometer circuit is compensating in a way to

record steep wave fronts associated with higher fre-

quencies.

Unfortunately, a frequency cut-off at 15 kc/sec is
too low. A hot-wire traverse of a two-dimensional

base boundary layer, as shown in Figure 5, indicates

that the velocity fluctuations have narro_v band com-
poncnts with center frequencies around 6 and 23 kc/sec.

A typicaloscflloscope traceis shown in:Figure 6. To

extend therangeofmeasurablefrequencies, the DISA

55A01 constant-temperaatre anemometer was pur-

chased. Staritz [ 23], using an earlier version of this

instrument, reports upper frequency limits of 6. 5

kc/sec at zero velocity and 25 kc/sec at 66 ft/sec.

These values were obtained at atmospheric densities.

The circuit diagram of the DISA anemometer is

shown in Figure 7. It is possible to read voltages to

an accuracy of ± 1 percent. This solution was found

to be adequate for the wind tunnel measurements, but

the Fluke differential voltmeter was used for probe

calibrations. Velocity fluctuation data, in the form of
rms values, were read on the DISA meter and on a

Ballantine Model 320 true rms electronic voltmeter.

Traces of the fluctuating velocities were recorded

from a Tektronix Model 561A oscilloscope using a

polaroid camera.

B. Probes

Because of the Ummess of the base velocity

boundarylayer (of the order of 0_05 in. ), the hot-wire

T
i-mmo

L

$.000 RF.F. _= I. 07"1e

., =.%,

. ,ep .$.,qk eP

÷.,÷÷-

REAR VIEW OF MODEL

FIGURE 5. HOT-WIRE TRAVERSE OF TWO-DIMENSIONAL BASE BOUNDARY LAYER
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x =0.016 in

y = 0.45 in

e- = 33.4 my

AT = 400 °C

x = 0. 016 in

y = 0.45 in

e- = 24.0 mv

hT = ZOO °C

x = 0. 016 in

y = 0.45 in

e-= 17.7 mv

AT = 100 °C

(DISA Anemometer; sweep rate, . 5 m see/cm;

sensitivity, 50 m V/cm).

FIGURE 6. OSCILLOSCOPE TRACES OF TURBU-

LENT VELOCITY FLUCTUATIONS.

Pu_ To UL_-

tree RES_raNc_

_ OFF o _r_

r_r "_ o,_,_

uE'f_n

FIGURE 7. BLOCK DIAGRAM OF DISA CONSTANT-

TEMPERATURE ANEMOMETER AND

ACCESSORY EQUIPMENT

probes used in this investigation were necessarily

smaller than those used in normal wind tunnel applica- •

tions. For probings in an attached boundary layer,

only the size of the probe near the sensing element is

critical. Disturbances introduced into the boundary

layer by the probe holder can be minimized by stream-

lining and by proper sweep. In the present application

the probe holder can interfere with the reeireulatory

flow processes and modify the base boundary layer

development [ l].

The major design objective was to minimize dis-

turbances by miniaturizing the sensing element and

the probe-holder combination. The studies reported

in Referenee I indicate that minimum disturbance of

the flow field results when the probe is inserted into

the recirculation zone through the base plate. The

probes p)rotruded from the base plate through openings

similar to static pressure taps. Nine probing posi-

tions were provided in a slanted array to minimize

disturbances of the boundary layer flow and to allow

probings at various vertical stations (Fig. 5). The

probe holders were made of stainless steel tubing with

a 0.32-inchdiameter; the tubing slides within a stain-
less steelsleeve of 0.035-inch inside diameter. Fig-

ure 8 shows details of the probe installation.

Two major probe designs were used for these

studies. In the first design, the sensing element was

made of 0. 00025-inch diameter platinum-irridium {80

Pt-20Ir) shown in Figure 9. Variations of this design

Pressure Taps

Sleeve

Detail A

Probe Actuator

Model Forebody

Base Plate

Insulated Leads

Insulating

Epoxy gil

Tube cut to provide for

junction

Leads welded to hot-wire

support members

Detail A

FIGURE 8. SCHEMATIC OF HOT-WIRE PROBE IN-

STALLATION OF MODEL BASE PLATE
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incorporated a bent probe for boundary layer measure-

ments (Fig. 10) and a straight version for probings

in the recirculation zone. In the second design, a

hot-film probe was formed of a 0. 001-inch diameter

quartz rod (Fig. 11); a platinum film 1000 A thick

was deposited on the rod as the sensing element.

These hot-film probes were manufactured to our speci-

fications by Thermo-Systems, Inc., of Minneapolis,

Minnesota. Magnified photographs of beth types of

probes are shown in Figure 12.

In an early version of the hot-wire probe, the in-

sulatedpositive leadwas passed throughthe 0. 032-inch

diameter stainless steel _bing, while the ground or

negative connection was made by silver soldering the

remaining lead to the wall of the tube. Slight changes

in the contact pressure between the hot-wire actuating
tube ancl the enclosing sleeve produced changes in

shunting resistances. These problems were eliminated

by enclosingboth insulated leads in the .actuating tube.

To facilitate removal and insertion of new probes into

,4

<

_'_ sui_red come_Jo_ cryp*r_)

0

FIGURE 9. DETAIL OF STRAIGHT PROBE TIP

WITH HOT-WIRE SENSOR
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FIGURE 10. DETAIL OF BENT PROBE TIP WITH

HOT-WIRE SENSOR
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FIGURE 11. DETAIL OF BENT PROBE TIP WITH

HOT-FILM SENSOR

\
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FIGURE 12. PHOTOGRAPH OF HOT-WIRE AND

HOT-FILM PROBES
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thedifferentprobingpositions,variousconnectorde-
signswere tried. In cooperationwith Thermo-

Systems, Inc., a micro-miniature coaxial probe con-

nector was designed and fabricated. A photograph and

schematic of this design are shown in Figure 13.

During the static calibration, all velocities were

obtained from measured static and stagnation pres- •

sures. Figure 14 gives the measurement accuracies

required for the resolution of mean and fluctuating

velocities at atmospheric pressure and at the low test

pressure of 4.5 inch oil. It was found that conven-

tional oil manometers are not accurate enough and

special micromanometers must be used. The ma-

nometer board fluid used for the wind tunnel studies

and the probe calibrations was Dow Corning Series

200 silicone oil, whose density is 0.9345 g/cm 3 at

25"C. However, zero-velocity hot-wire probe data

were obtained in a bell jar. We found that a straight-

line fairing of the probe calibration data could be

extrapolated through the zero velocity point obtained

in the bell jar. A near-zero velocity setting of the

tunnel could also be obtained by properly positioning

the valves, although this was not as accurate as the

bell jar method. To improve the low-velocity accuracy,

future studies will be performed using a calibrated

hot-wire probe as the velocity sensor.

FIGURE 13. PHOTOGRAPH AND DETAIL SKETCH

OF MICROMINIATURE CABLE CON-

NECTOR FOR HOT-WIRE PROBE

C. Calibiration Ducts

The initial hot-wire probe calibrations were

performed in a low speed wind tunnel at atmospheric

density conditions. The tunnel is powered by a small

centrifugal blower and can be controlled to provide

test section velocities of 0 to 40 ft/sec; it is well suited

for probe calibration studies at low velocities and ordi-

nary densities. Low free-stream turbulence levels

result from damping screens in the settling chamber.

The test section is circular and has a 4-inch diameter.

To simulate density conditions in the base-flow

regions, the majority of the calibrations were per-

formed in a small free-jet wind tunnel. This tunnel

is powered by a vacuum pump capable of producing

pressures aslow as 60 p Hg. Room air is drawn into a

6-inch diameter stagnation chamber through a preci-

sion throttling valve. The flow is smoothed by passing

through a filter and screen assembly formed of two

porous steel plates and a layer of fine-gauge screen-

ing. Test section velocity and static pressure levels

are controlled by adjusting the upstream throttling

valve and the downstream vacuum valve° This allows

probe calibration over a wid_ range of densities; ve-

locity variations from several ft/sec to sonic speeds

can be obtained.

I000

IOC

10

, , , , , ,,,[ * , , , *,[ , , , , , , ,,.

l_w-Corning SerieB ZOO Silicone Oil

(l in. Hg = 14.483 in. oil_t T = 75"F)

_U - Velocity increment for oil manometer _ _x _

board resoluti_ of _x = _0.01 in. oil a _U_ f -

U' - Velocity increment for microman- --_*"

om*,t_ror_,,o_ution ot x __

.... o.oo, io.o._ _"_-_-_--I _ o_- _

--- ___ _ T O = 75"F

........ I l ._'_l [ I t Ill l l .....

O. OOl 0.010 , O. lO0 l. O00

P0 " PI* (in. oil a}

FIGURE 14. ILLUSTRATION OF PRESSURE RE-

QUIREMENTS

IV. STATIC CALIBRATION

The aim of the static calibration is to provide

values of A' and B'. These may be obtained from a

straight-line fit of the hot-wire output 12 Rw/(T w - T e)

as plotted against values of (pU)1/2 that have been

calculated from measured pressures.

The calibrated probes are listed on Table I.
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TABLEI. CALIBRATEDPROBES

Ho%-Wlre Ma%erlal Pt 80-1r 20

Nominal Lem6th ,f 0.iO in.
Num_ Dia_er ,D w 2.5 x lO-_hln.1

T_Iserature Coeff., u 8-39 x 10-_'C -_

5Q

4G

5U

5GC

7U

7Ca
2

1.66

1.66

1.66

1.66

1-71

1.71

1;70

1.70

1.70

22.15

S_.08

23.71

Z2.1_

22.8;*

23.67

26.56

23-50

AT= 200" C i AT= _O"CRy (_)

25.8O [9.6O

28.10 3e._

27.65 31.65

25.8o 29.58

26.67 3o.50

27.61 51.58

3_.05 36.70

3o-97 35._7

27.5O 31.5o

For reasons of convenience, the temperature differ-

ence T w - T e was replaced with the more accessible

resistance differenceR w - R e. This assumes a linear

resistance-temperature relationship. The linearity

was checked with simple apparatus consisting of a

small, highly polished stainless steel container which

is instrumented with thermocouples. It contains a

Wire sample that is inserted in reference baths of
various temperatures. The variation of resistance

with temperature, as measured by a Wheatstone bridge

capable of resolving 0. 01 ohm, yielded resistance co-

efficients which range from G = 8.6 x 10 -4 °C -1 at 0°C
and above to 10. 1 x 10 -4 °C -I at -188"C.

Lowel[ 10] measured the resistance of several

samples of platinum-irridium wire over a temperature

range of 20"C to 700°C. Three samples yielded re-
sistance coefficients of 6.53 x 10 -4, 7.34 x 10 -4, and

9.76x 10 -4 °C -1, with an average value of 7.88 x 10 -4

°C -1. The information required to measure wire

equilibrium temperature for cool wall conditions was
not includech

In the calibration tests, the temper ature difference

AT = T w - T e was mostly set at 200" K. It never ex-
ceeded 400 ° K. Within these intervals the resistance-

temperature curve was sufficiently linear, allowing
use of a constant _.

A. Atmospheric Density

Although our primary interest was in probe

calibration at low densities, there are certain advan-

tages inmakingpreliminary measurements under con-
tinuum flow conditions. First, low velocities can be

easily and accurately measured using standard micro-

manometric techniques. Secondly, these continuum

measurements afford a eonvenientmethod of checking

the performance of novel probe designs under well-
known flow conditions.

All calibration studies were performed with the

manual balancing set. Calibration data for a typical

probe are shown in Figure 15. As theory predicts,

the data points fall well on a straight line.

3

probe Z
Pe = Atmo_rl¢
AT- 400"C

LI I I I I I I t ! / ....z 0.4 0.6 o.$ LO 1.2 1.4 1,6 I s o Lz z.4 z.b z.s L0

_u) '/z . ]o2 {_ll/Z

FIGURE 15. MEAN VELOCITY CALIBRATION AT

ATMOSPHERIC PRESSURE

B. Low Densities

All the probes were calibrated at a density level

corresponding to that in the base-flow recirculation

zone. The probings were performed at a stagnation

pressure of 40 psia, which results in a base pressure

of 7 mm Hg. Because the recirculation zone tem-

peratures are approximately 60* F colder than normal

room temperatures (depending on tunnel stagnation

temperature, which is strongly affected by the outside

ambient temperature), probe calibrations were per-

formed at 7 and 8 mm Hg.

The results indicate that the basic heat loss as

represented by equation (3)_s still valid, even at this

low density.

Typical straight-line approximations are shown

in Figure 16 for the largest temperature difference.

The approximation is generally good, although some

small deviations from linearity usually occur at the

highest mass fluxes. At smaller temperature dif-

ferences, the llnearity should be even better.

_4

3

l.l

1.6

FIGURE 16.

AT _I'CP 4_

la_ i u I

I_ I O I

MEAN VELOCITY CALIBRATION RE-

STILTS (4. 00 in. oil a)
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The variation of King's law "constants" with over-

heat and density is shox,n in Figure 17. It shows

both density and overheat strongly affect the values of

the "constants". The variation of these constants is

not explicitly predicted by equations (7) and (8). In

particular, the expression for A' shows no dependence

on density, because k t is a functionof free-stream to-

tal temperature only. An alternative is to evaluate k

at the mean film temperature as discussed by Hinze

[ 5]. However, because k depends largely on temper-

ature, this p_ocedure still does not explain the depen-

dence on density.

_.o

s.o

_.o 4.s

4.o
:c

3. S

| i i i i

T- T _-c_

FIGURE 17. VARIATION OF KING'S LAW "CON-

STANTS" WITH OVERHEAT AND

DENSITY

A closer correlation between the values of the

constants at various densities and overheats could be

obtained if probe correction for end effects and slip

flow were made. However, these procedures are not

well established, and individual calibration of probes

at the desired overheats and densities are required to

obtain reliable results.

C. Wall Proximity

The effects ofwallproximity_mhot-wire mean

velocity indications have been studied at ambient den-

sities, but apparently little work has been done at low

densities. It is known that a boundary wall can in-

fluence temperature and velocity fields around the

hot-wire probe and thus affect the heat loss from a

wire. As the hot-wire probe approaches the wall, heat

losses for a given flow velocity are larger than those

encountered in calibration of the hot-wire probe. This

gives a heat loss indication which is too high and which

tends to distort the inner portion of the velocity pro-

file. Earlier investigations [ 24, 25] of wall effect

show that the errors encountered are appreciable and

extend a considerable distance from the wail. In the

present investigation, where the density is on the order

of 0. 01 arm, the wall effect is even more severe; it is

sufficient to overpower the decreasing velocity in the

inner portion of the profile and to indicate an increasing.

velocity as the wall is approached.

Some of the earlier studies of wall effect were

performed by Van der Hegge Zijnen [ 24] and Dryden

[ 26]. They measured heat losses from tlie hot wire
at various distances from the wall under still-air con-

ditions. They also derived an equation which relates

heat loss with (1) the distance from the wall, and (2)

the temperature difference between the hot-wire and

the wall. These still-air calibrations were used to

correct velocity profile data. Van der Hegge Zijnen

reported that in some cases this correction procedure

resulted in an S-shaped distortion of the velocity pro-

file. Dryden noted this difficulty and recommended

that no correction be made for heat loss when the flow

is laminar and when the velocity is greater than 3

ft/sec.

Dryden applied the above method to correct the

root-mean-square velocity fluctuation measurements.

This correction resulted in an increase in the turbu-

lence intensity _I'/U.

Piercy, Richardson and Winny [ 27] theoretically

and experimentally investigated wall effects at low

vel6cities. They performed a two-dimensional anal-

ysis assuming aninviscid incompressible fluid. Their

theory showed that the wall proximity effect is a strong

function of flow velocity over the hot wire; thus, for

a given error, the probe can be moved closer to the

wall as the velocity is increased. They verified their

theory by whirling a hot wire through still air near the

surface of a large brass cylinder. Heat losses were

measured for various wire velocities and distance

from the cylinder. Velocity ranged from 1/6 to 2

ft/sec; an optical positioning technique permitted the

wire to be placed within approximately 0. 005 inch of

the cylinder wall.

The most recent work on the problem seems to be

that of Wills [25], who made an experimental study

of heat loss from hot wires near one wall of a narrow,

parallel walled channel. These measurements were

made for a condition of laminar, fully developed pipe

flow; but he showed that some of the relationships be-

tween velocity and distance from the wall could be ob-

tained in laminar and turbulent boundary layer flow.

Wills also showed that wall effect is strongly velocity

dependent.

The wall proximity effect was experimentally

studied in the present investigation by two methods.

The first method was performed under actual base

flow conditions. Here, the hot-wire probe was tra-

versed through the model base boundary layer, and

velocity indications were obtained at various overheats
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ranging from 50to400"C. Interpretation of these data

• is difficult because of the unknown characteristics of

the boundary layer. The second method involved

measurements under still-air conditions in the wind

tunnel and in a bell jar using a simulated model surface.

Measurements in the bell jar were performed for den-

sities ranging from ambient to 0. 01 arm. Our meas-

urements at ambient density generally agreed with

those of Wills [ 25] and Piercy et al [ 27]. The results

of the low-density measurements are presented in

Figure 18, which shows the effects of wire overheat.

Most measurements were performed with the plate

horizontal; but one set of data, showing vel:y little ef-

fect, was taken with the plate vertical.

ZoS! ...... I ........ | ........ I ......

U = 00neU. ,.Tas-)

.
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_,T = loo'c
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1.8 , , .... I , ....... I , • , ,J,,,I , ....

Io lO0 1000 10000

FIGURE 18. WALL PROXIMITY DATA AT VARIOUS

WIRE OVERHEAT TEMPERATURES AT

LOW DENSITY

Because of the strong influence of velocity on wall

effect, zero-velocity calibrations are not sufficiently
accurate to correct wind tunnel test data. Since the

nature of the base boundary layer is unknown, it is not

presently possible to perform a calibration under

simulated flow conditions at low densities. Thus, we

are faced with the problem of performing a calcula-

tion which requires prior knowledge of the velocity

distribution. As mentioned previously, this problem

is not too severe for near-ambient density conditions;
but at low densities in the recirculation zone, the wall

effect correction is sufficiently large to completely

distort the indicated velocity profile and to prevent a

meaningful correctiom This problem requires further

investigation before definite conclusions can be

reached.

D. Resistance Thermometer

Since the velocities in the boundary layer are
low (roughly U < 100 ft/sec), the unheated probe can

be used as a resistance thermometer to measure Te,
which is essentially the local static temperature. At

ambient densities, adequate bridge sensitivity is easily

obtained without significant wire heating. However,
at low densities--where the wire heat loss is much

smaller--this same current would appreciably heat the

wire; this would falsify the wire resistance and there-

fore the temperature indication. Bell jar experiments

were made to select a proper bridge indication voltage.

The results are shown in Figure 19.
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FIGURE 19. EFFECT OF DENSITY LEVEL ON HOT-

WIRE "COLD" RESISTANCE

The linear resistance-temperature relation is an

approximation to a more general relation

R o [I + ¢x (T-To) + .], (II)R = _(T-T) s +..o

where c_, _ .... are temperature coefficients of re-

sistance. For the metals used in hot-wire sensing
elements, _/a _ 10-4; thus, for moderate values of T

one can omit the higher order terms from equation

(li_) and simply write it as

R =R ° [I + a (T-To) ] . (12)

From equation (12")

R-R (1o - To)
T = (13)

o

which may be used to calculate temperatures from
measured values of R.

The use of equation (t_) to find a temperature T

from a measured value of R depends upon knowing a

with sufficient accuracy. Handbook values are not good

enough for precise work because _ is sensitive to

small amounts of impurities and is influenced by the

mechanical drawing process used to make fine wires.

For greatest accuracy, c_ must be determined for
each batch of wire.
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V. DYNAMICCALIBRATION

Preliminarytheoretical calculations, guided by

existing shear layer data, indicate the likelihood of

velocity fluctuations in the recirculation zone and

base boundary layer with frequencies up to "30 kc/sec

and higher. This has been confirmed by our recent

measurements in which bursts of periodic fluctuations
were observed in the 6 to 23 kc/sec frequency range.

Inthe base boundary layer, the mean velocities range
from zero at the w_l to values of the order of 100

ft/sec at the edge of the boundary layer. It becomes

important inthis sectionto consider the frequency re-

sponse of the hot-wire apparatus, especially since the

velocity fluctuations are sometimes comparable in

magnitude to the mean flow velocity.

The accurate estimate of cross correlation coef-

ficients requires that the instrument be as linear and

time invariant as possible° In this case, systematic

distortions like thermal inertia can be eliminated using
the time average frequency response function [28].

However, dynamic signal distortions like timing er-

rors, shifts in reference (zerol levels or phases can-

not be corrected [31 . They have to be kept to a mini-

mum. A realistic tolerancewouldbe to require that the

relative dynamic error of the power transfer function

A [H21 / IH21 _nd the dynamic phase shifts between the

outputs of two hot-wires does not exceed 2 percent.

Therefore, the ideal dynamic calibration program

should establish the standard deviations of the fre-

quency response functions besides their average values

[3].

A. Square Wave Excitation

The problem with dynamic calibration is that

there are no calibration tunnels which can produce

stationary mass flux fluctuations with prescribed

ranges of frequency and amplitude. It is planned to

use the vortices which are shed from heated wires.

However, this method is in the early stages of develop-

ment [29], and therefore dynamic calibration had to

be based on the simpler square wave excitation as

proposed in the DISA operational manual.

Instead of keeping the wire at a constant tempera-

ture in a known mass flux fluctuation, the wire is

placed in the smooth flow of the static calibration duet

and driven by a stepwise heating current such that its

temperature changes stepwise in time. It is then as-

sumed that the output of the wire resembles the unit
,,° ,

step response'°¢of the hot-=wire system. In this case

a crude estimate of the frequenc:_ response function

H(f) could be obtained from the Fourier transform of

the output signal time history. In practi_e, however,

it is as accurate to assume that the constant-

temperature hot-wire system behaves like a highly

damped harmonic oscillator, the unit step response of

which is known. Figure 20 gives an example of this

"idealized wave form. " The corresponding frequency '

respensefunctions are plotted in Figure 21. They are

sufficiently fiat up to a certain "cut-off freqt_ency" fu,
where the response to a hypothetical harmonic cali-

bration input will have dropped 3 db below the expected

quasi-steady value (power transfer function IH21= 1/2

of its static value). This cut-off frequency may be

read directly from the square wave response as shown

in Figure 20. This is the only dynamic property that

has been measured to the present, and the results will

now be used for a qualitative discussion of the fre-

quency response function.

Actual Wave Form

f

A

1LA
0. 37A

_x--_

Idealized Wave Form

A t (_ sec) = A x(cm) • sweep rate (p see/cm)

i
f _

u 27rAt

FIGURE 20. SQUARE-WAVE METHOD OF MEAS-

URING CUT-OFF FREQUENCY f
U

All dynamic calibration work was performed with

the DISA constant-temperature system using probes

7GA and 5GA. Some representative samples of the

square wave response are given in Figure 22. One

ss



o

oZ

-4

-6

o10

-12

-14

-16

• , a ,,,,. , [

n,, _ 3.87 (_,,)

o , • oo.o. , |

O.Z Z

\ ec)

(33 ftlH¢)

s I ,o.oso i

ZOO

1.00

0.79

0. 63

0. S0

0.32

0.?.S

o. zo _ -

• 0. ib

J i , Jl,.o • ]

2e

rreqw_-y {_c/mw)

(After DISA Operating Manual, Model 55A011

FIGURE 2 i. FREQUENCY RESIK)NSE ESTIMATE

FOR THREE MEAN STREAM VELOCI-

TIES AT ATMOSPHERIC CONDITIONS

U = 0 ftlsec

fu : 3.64 kclsec

At = 43-7_sec
P. = atmospheric

U = 0 ft/sec

fu : 0. 66 kc/sec

At = 2_.0psec

1_ = 0.311 in.Hga

U = 273 _/sec

fu = 0.76 kc/sec

At = _.0.0_ec

P_ = 0. 311 imHga

FIGURE 22. OSCILLOSCOPE TRACES SHOWING

SQUARE-WAVE RESPONSE OF DISA

ANEMOMETER

sees immediately that the cut-off frequencies are

lowered by about 80 percent if the pressure level is

decreased from one atmosphere to 0.31 inch Hg. A

slight improvement canbe obtained by raising the ve-

locity level. Both effects have therefore been studied

separately.

B. The Zero Velocity Cut-Off Frequency

The largest frequency response limitations

are to be expected at near-zero velocities and low

densities. Therefore, the zero velocity frequency

response has been studied as a function of pressure

level. The results are shown in Figure 23. At at-

mospharic densities the near-zero velocity frequency

response is fiat up to 4 kc/sec. This is already one

order of magnitude smaller than required. Lowering"

the pressure to the values which are anticipated on

base beating tests reduces the cut-off frequencies by
another order of magnitude. Thus, the present hot-

wire systems are incapable of resolving the fluctua-

tions near the reattachment region of free shear layers,

where the largest fluctuations are anticipated.

• , , , .#b'-

. ,-,]
{.

!

p. (i_. HSa}

FIGURE 23. ZERO VELOCITY CUT-OFF FREQUENCY

f (3 db down) FOR VARIOUS PRESSURE
tt

LEVELS

C. Frequency Response at Nonzero Velocities

At atmospheric pressures, Staritz [23]

showed that the usable frequency range can be improved

by a factor of 5 by raising the velocity from zero to
several hundred ft/sec. Similar results are also

_hown in Figure 21. A similar, but smaller, effect

has been found at low pressures. Figure 24 gives the

velocity dependence of the cut-off frequency for apres-

sure level o8 8 :ram Hg. Raising the velocity from

0 to 800 ft/sec will increase the cut-off frequency by

roughly a factor of 2. However, this increase cannot
be used in flow where the fluctuation levels are com-

parable to the mean values, since a velocity dependent
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frequency response violates the basic requirement that

the instrument has to be time invariant. Thus, a cor-

relation analysis of turbulent fluctuations can be per-

formed only for those frequencies that do not appreci-

ably exceed the cut-off frequency for near-zero

velocity.

The above results indicate that even the advanced

constant-temperatuCre hot-wire systems, such as the

Kovasznay circuit or the DISA anemometer, are un-

able to resolve relatively high turbulent fluctuations in

the reattachment region of free shear layers. The flat

frequency response might be extended to 2 kc/sec by

raising the densitylevels to approximately 10 percent

of the atmospheric value.

Further improvements are only possible by re-

designing both the circuitry and the probes. We pro-

pose:

1) To modify the electronic circuits to allow pre-

cise neutralization of reactive impedances, which limit

the maximum usable frequency. In addition, special

precautions must be taken in the construction of the

hot-wire bridge to minimize stray capacitance and

inductance.

2) To raise the tolerable heating current at near-

zero velocity by replacing the wire with an internally

cooled film sensor. This will increase the total heat

loss from the sensor, which in effect simulates a

higher stream velocity. An accurate velocity measure-

ment is then obtained through precise calibration and

control of the coolant flow.

3) To lower the thermal inertia of the film by de-

creasing the film thickness and using materials having

lower Cw/(_ values which previously could not be

drawn into thin wires. New sputtering techniques now

allow deposition of practically any material on a wide

variety of substrates.
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THEORY AND APPLICATION OF LONG DURATION

HEAT FLUX TRANSDUCERS

by

S. James Robertson* and John P. Heaman

SUMMARY ACKNOWLEDGEMENTS

Presented in this paper are various devices and

techniques for the measurement of heat flux. The._
principles of operation of the slug type sensor and _

the steady-state sensor are discussed, and certain de-

sign parameters for these sensors are presented.

Special considerations for the application of beth
radiation and convection measuring devices, and the

various types of heat flux simulators used in calibrating
heat flux transducers are discussed.

SECTION I. INTRODUCTION

The extreme thermal environments encountered

in the base region and other areas of large rocket

powered vehicles have created special design problems

which require a knowledge of the intensity of the heat

transfer to be expected. To acquire this knowledge,

heat transfer measurements have been made during

scale model tests and flight tests of these vehicles.

During the early scale model "hot flow" testing

of Saturn I at Lewis Research Center and Arnold En-

gineering Development Center, the lack of existing

knowledge and experience in heat flux measurements

resulted in the accumulation of base heating data which

was difficult, if not impossible, to analyze. To help

overcome this lack of knowledge and experience, a

study program was initiated by Aeroballistics Division

(now Aero-Astrodynamics Laboratory) of MSFC in

September 1961. This program, performed under

contract by Heat Technology Laberatory, Inc., of

Huntsville, Alabama resulted in the development of

instrumentation employing the latest state-of-the-art

concepts for heat flux measurements.

The purpose of this note is to present an outline

of the theory and application of the various types of

heat flux transducers used to measure the "long dura-

tion variety; that is, they are used in tests of more

than a second's duration.

* HEAT TECHNOLOGY LABORATORY, INC.

Huntsville, Alabama

Several of the personnel of the Aerodynamics

Division have contributed in various ways to the ac-

cumulation and presentation of the information con-

tained herein.

SECTION II. THEORY OF BASIC SENSING DEVICES

The basic heat transfer equation which applies to

all of the sensors described herein is

Q = Qstorage + Qloss, (1)

where Q is the rate of heat input into a sensor and

Qstorage and Qloss are the components which are

stored in the sensor or lost.

Most heat flux sensors fall into two general cate-

gories depending on which term of equation (1) is used

in the measurement:

1. Slug type - the storage term

2. Steady-state type - the loss term

A. The Slug Type Sensor

Until recently, the most widely used heat flux

measuring device was the slug type heat flux trans-

ducer. The "slug" is a relatively thermally isolated

heat-receiving mass with provision for continuous

measurement of its temperature.

1. The Slug Heat Transfer Equation. The

heat flux measured by a perfectly thermally isolated

slug is related to the time rate of change of "slug tem-

perature dT/dt according to the following equation:

dT/dt = q/K, (2)

where q is the heat flux and K is a calibration constant

depending on (1)the fraction of the heat flux actually

absorbed by the slug and (2) the thermal capacitance

of the slug.
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Normally, the slugcannotbe sufficiently thermally

isolated for heat losses to be considered negligible.
These losses primarily consist of conducticm losses

and are generally assumed to be proportional to the

temperature difference, AT, between the slug and its

surroundings. Adding the 'floss" term to equation (2)

yields the slug transducer equation

dT/dt = q/K- 0AT (3)

or

q = K dT/dt + KSAT,

where e is a calibrationconstantdependingonly on the

thermal resistance between the slug and its surround-

ings and the thermal capacitance of the slug. The

fraction of the heat flux actually absorbed by the slug

does not influence the value of this constant. Equation

(3) is derived in Appendix A.

2. Calibratingthe Slug Transducer. Equation

(3) indicates that the heat flux measured by a slug
transducer can be considered a function of th_

temperature-time derivative of the slug with the slug
temperature as aparameter. This is based on the as-

sumption that the "loss" term depends only on the in-

stantaneous magnitude of the slug temperature.

Based on the above hypothesis, one method for

calibrating the slug transducer is to expose the trans-

ducer to several values of a known constant heat fltu¢

andplot this heat fluxasa fanctionof the slug temper-

ature-time derivative with slug temperature, T, as a

parameter. A typical calibration plot is shown below.

dT/dt

T is the initial slug temperature.
O

Another method of calibrating the; slug transducer

depends on directly determining the value of the cali-

brationconstants Kand 0 inequation (3). This is done
by first exposing the transducer to known values of a

constant heat flux, as in the previous method. If the

value of the calibration constants K and e may be as-

sumed to be constant and the temperature difference,

AT, assumed to be equal to the temperature rise of

the slug, the calibration constants may he obtained

from the following equations:

K = q/(dT/dt)i , (4)

(dT/dt)i - dT/dt
8=

At

where (dT/dt)i is the _.i_j.1 slope of the temperature-
time curve.

Another method for determining the loss coef-

ficient, 8, is through the use of the following equation:

Z ATK_I (l-e -0t).q o (5)

Equation (5), obtained by integrating equation (3),

is graphed parametrically in Figure 1. The principal

advantage in using this method is that the loss coef-

ficient, 0, may be determined directly from the tem-

perature rise, AT, thus avoiding the possibility of

introducing large errors in determining the slope,

dT/dt, by graphical techniques.

20 \ I
! = 25_ Z = ATK =1(1-e-Or)

__ q 0

15 \\

_ 3

0

0.0 0.05 -1 0.10 0.15
O,Sec

FIGURE 1. PARAMETRIC REPRESENTATION OF

THE EQUATION USED IN DETERMIN-

ING THE LOSS COEFFICIENT.

All the above described calibration techniques, in

which the instrument is calibrated before the test, have

some inherent error, because the heat losses are not

point functions of the slug temperature, but depend on
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thehistoryof theheatingrate to the slug. Thus, an

exact point calibration applicable for every possible

heat flux history is not possible. Therefore, the heat

flux history to a slug transducer is sometimes deter-

mined by exposing a similar transducer to a varying

heat flux such that the temperature history of the

original transducer is duplicated. The resulting heat

flux history is then taken to be the same as that of the

original transducer. This method is useful only for

slowlyvarying heat fluxes, because radical changes in

heat flux will result in relatively small changes in the

magnitude of the slugtemperature over a small period

of time.

Whether the transducers are to be used in meas-

uring radiation or convection must be considered dur-

ing calibrating. Generally, the calibrating heat source

is radiation whether the transducers are used for con-

vection or for radiation measurements because it is

much easier to supply radiationof known intensity than

convection of known intensity. When a transducer to

be used in measuring convection is calibrated in a ra-

diant heat source, the sensing surface must be coated

with a material of high absorptivity for thermal radia-

tion. The absorptivity must then be considered in de-

termining the heat flux to the transducer.

3. Response Time. The response time, t*,

for a lossless slug transducer is obtained from the

following equation:

t¢ = 0.203 52/a, (6)

where 5 is the slugthickness and (_ is the thermal dif-

fusivity of the slug material. This equation is pre-

sentedgraphically in Figure 2. Equation (6), derived

in Appendix B, is defined as the time required for the

slope of the back surface temperature-time curve to

reach approximately 75 percent of quasi-steady-state

after a step change in heat flux.

4. Thermal Capacitance. In designing a slug

type transducer, the thickness of the slug affects not

only the response time but also the duration for which

the transducer may be exposed to a given thermal en-

vironment.

The slug thickness, 5, required for a specified

integrated heat flux history f qdt can be estimated

O

from the following equation:

t

fo qdt
5 - (7a)

pCAT

or

5 = qt (7b)
pcAT '

6 2
t* = 0,203 --

a
10

.- //

10

o

10 °2

10-3

zo-2 lO"1 1
SLUG THICKNESS, 6, Inches

FIGURE 2. RESPONSE TIME, t'.", OF A SLUG

CALORIMETER AS A FUNCTION OF

SLUG THICKNESS, 5, AND THERMAL

DIFFUSIVITY, a.

for a constant heat flux,q, where AT is the maximum

allowable temperature rise of the slug and p and c are

the density and specific heat, respectively, of the slug.

Losses are neglected. This equation is presented as

a nomogram in Figure 3 for a constant heat flux.

NOMOGRAM

q, BTU/ft 2 sec X t, sec

100,

10'

100 •

10-

14

6e In

10-

1"

0.1"

0.01 -

0.001

pC, BTU/It3OF

10"

COPPER

SS(TYPE

100. 301)

DirecUons f_r Use: Connect the points c_srespmtding to q and t with a straight

line and find intersection with X. Connect this point with point cocrespocding

to pC with another straight line and find IntersecUen with 8.

FIGURE 3. NOMOGRAM FOR DETERMINING THE

SLUG THICKNESS, 5, OF A SLUG-

TYPE CALORIMETER EXPOSED TO

A CONSTANT HEAT FLUX, q, FOR A

MAXIMUM TEMPERATURE RISE, AT,

OF 600 ° F.
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A slug exposed to convective beat flux will respond

. according to

h(T r - T) = pc5 dT/dt, (8)

where h is the film coefficient for convective beat

transfer, T r is the recovery temperature of the con-
vective gases, andp, c, and5 are the density, specific

heat, and thickness, respectively, of the slug. Again,

losses are neglected. Upon integrating equation (8),

the following expression for slug thickness is obtained:

ht

° :TrTiJ
(9)

wherehand T r areassumed constant, AT is themaxi-
mum allowable temperature rise of the slug, and T i

is the initial slug temperature. The maximum AT is

determined by the temperature which the transducer

materials begin to deteriorate. A nomogram for this

equation is presented in Figure 4.
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FIGURE 4. NOMOGRAM FOR DETERl_IINING THE

SLUG-TYPE CALORIMETER EXPOSED

TO CONVECTIVE HEAT FLUX FOR A

MAXIMUM TEMPERATURE RISE, AT,
OF 600" F.

5. Heat Losses. The heat losses from the

slug are primarflyfunctions of slug temperature, ma-

terials used, and the transducer geometry. The con-

tribuUon of each of the three modes of beat transfer

is discussed here with emphasis on preventing beat

losse=.

a. Conduction Losses. Conduction losses

are present through the edge insulation, the thermo-

couple wires, and the rear surface insulation (if

present). It is apparent that these losses may be

lessened by reducing the slug temperalzwe, reducing

the diameter of the thermocouple wires, and by using

materials (insulation and mounting) around the slug

with low thermal conducUvity and heat capacity.

Another method for reducing heat losses is by

employing the "guard-ring" principle illus_ated below.

ql sz.g
[_[_-_--Guard Ring

Thermocouple--_ _ Slug Support

The slug is suspended by supports of high thermal re-

sistance attached to the guard-ring such that the con-

duction path is from the slug through the slug supports

to the guard-ring. The guard-ring is designed so that

the temperature difference between the slug and the

guard-ring is small, thus making the conduction losses
also small.

Appendix C is an analysis of the response to con-

stant heat flux of a slugbacked by a semi-infinite im-

perfect insulator. Correction factors are derived to

correct both the temperature rise and the slope for

conduction losses.

b. Radiation Losses. Rear surface radia-

tion and exposed surface reradiation become signifi-

cant only with relatively high slug temperaha'es

(greater than about 600°F). Because radiation is

proportional to the fourth power of absolute tempera-

tttre, radiation losses rise rapidly with higher tem-

peratures. At a slug temperature of 700°F, all ex-

posed portions of the slug are emitting nearly 0. 8

Btu/ft 2 sec (assuming high emissivity surfaces).

c. Natural Convection. If the space around

the slug is not evacuated, losses will occur from

natural convection. The convective heat transfer co-

efficient to an average size slug was estimated by the
methodofreference i to be of the order of 10 -3 Btu/ft 2

-sec°F. Thus, for a slug temperature rise of 500°F,
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a possibleheatlossontheorderof 1/2Btu/ft2 -sec

may be expected from natural convection.

6. The Loss Measuring Slug Transducer. The

loss-measuring slug transducer is a modification of

the conventional slug transducer with provision for

measuring the temperature difference between the slug

andcasing as well as the temperature of the slug (see
sketch below).

Copper

I II ,r- 2--Reference Junction
L_ I I-_ C_)

NXP0tent,om:t_r /

Recorders

Since the heat losses are nearly proportional to the

temperature difference between the slug and the casing

to which the slug is suspended, a measurement of this

temperature difference should give a very accurate
correction for heat losses.

7. Desirable Criteria for Slug Transducer

Design. The following is a summary of the primary

design criteria for slug transducers for all applica-

tions (design features for particular applications are

discussed in a later section):

a. The heat losses from the slug should be

as small as possible to minimize the effects of losses

on the temperature history of the slug.

b. The slug should have sufficient thermal

capacity for the slug temperature to remain below a

maximum allowable level (about 600 ° F for most calo-

rimeter designs) for the duration of any expected test.

c. The response of the slope of the tem-

perature history to changes in heat flux should be as

rapid as possible.

B. STEADY STATE SENSORS

Steady-state sensors are defined as those

sensors which, upon being exposed to a constant heat

flux, reach a steady output: after a relatively short

period of time. Thus, equilibrium'output can be re-

lated directly (usually proportionately) to the heat
flux.

Three types of steady-state sensors are described

below: (1) the Gardon type sensor or Gardon Gauge,

(2) a variation of the Gardon principle referred to

herein as the Disc-Rod sensor, and (3) the semi-
infinite slab sensor.

1. The Gardon Gauge. The Gardon' gauge

sensor, first described by Robert Gardon in Reference

2, consists basically of a thin constantan disc con-

nected around its edge to a large copper mass, and at

its center to a fine copper wire as shown in the fol-

lowing illustration.

q_ Constantan_ Disc

Copper 7//_ ....... i ....... (/_/ Copper
Heat ---,-/-/J I r// .,--Heat
Sink _//_--r-1 I r// Sink

I  nne CopperWire
Copper Wire f

/--- Potentiometer Recorder

This construction results in the formation of a copper-

constantan differential thermocouple between the cen-

ter and the edge of the disc. When the disc is exposed

to the heat flux, an equilibrium temperature difference

is rapidlyestablished _vhichis proportional to the heat

flux being absorbed. Thus, the heat flux to the sensor

is obtained directly from the output of the differential

thermocouple.

The sensitivity of the Gardon gauge sensor is ob-

tained from the following equation [ 2] :

E/q = 0.03 D2/6, (10)

where E/q is in mv/Btu/ft 2 -sec and the disc diameter,

D, and thickness, 5, are in inches.

The response time is given by [ 2] :

t* = 6D 2, "(11)

where the response time, t*, is in seconds and the

diameter, D, is in inches. The response time as used

here is defined as the time required for the output to

reach approximately 63 percent steady-state. Equa-

tions (10) and (11) are presented graphically in Fig-
ure 5.

The ratio of sensitivity to response time depends

entirely on the disc thickness, 5 :

P/,

= O. 005/6, (12)
t_

where, again, the sensitivity, E/q, is in mv/Btu/ft z

-sec, the response time, t• , is in seconds, and the

thickness, 5, is in inches. Therefore, to increase

sensitivity without simultaneously increasing the re-

sponse time, the disc thickness must be decreased.
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AND RESPONSE TIME, t *, AS

FUNCTION OF DISC DIAMETER, D,

AND THICKNESS, 5.

2. Disc-RodSensor. A Variation of theGaxdon

gauge principle referred to as the disc-rod sensor is
illustrated below.

'I

lh'111111zl---Com_ HemSink

This sensor consists basically of a thin copper heat-

receiving disc attached to a constantsm wire or rod

which in turn is attached to a large copper heat sink.

The copper-constantan differential thermocouple is
formed in this case between the two ends of the con-

stantan rod. For recording the end output, copper

lead wires are attached to the copper disc and heat

sink. The theory of the disc-rod sensor is described

in Appendix D.

The sensitivity of the disc-rod sensor is given by

the following equation.

E/q= 0.5 (D/d)_-1, (13)

where the sensitivity, E/q, is in mv/Bttt/ft s -sec,

D/d is the ratio of the diameter of the copper disc to

the diameter of the rod, and I is the length of the rod

in inches. Equation (13) is presented graphically in

Figure 6.

l/q - 0.5 1_12|

,oo .: / /
'-, /

//
1

10 100 1000

o,al

FIGURE 6. SENSITIVITY, E/q, OF A D]SC.-ROD
SENSOR AS A FUNCTION OF THE

RATIO, D/d, OF DISC TO ROD DIA-

METER AND ROD LENGTH, L

The response time is given by

t* = 50 [I +2 (D/d) s (5/1)] I s (14)

IffilM

" 10

£

6ffi0.001_

1

where the response time, t• , is in seconds, D/d is

the ratio of the diameter of the copper disc to the

diameter of the rod, 6/1 is the ratio of the disc thick-

ness to the length of the rod, and I is the length of the

rod in inches. Equation (t4) is presented graphically

in Figure 7.

t.. 5o[ z.2 ,_,/_,2,_,, ] J'

//27
10 100 1000

D/d

FIGURE 7. RESPONSE TIME,t_, OF A DISC-ROD

SENSOR AS A FUNCTION OF THE

RATIO, D/d, OF DISC TO ROD DIA-

METER AND ROD LENGTH,I.
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3. Semi-lnfinite Slab Sensor. The basic fea-

tures of the semi-infinite slab sensor are illustrated

below. Its operation consists of the measurement of

temperature difference between two points in the slab

near the surface. The theory of this measurement is

described in Appendix E.

T 1 T 2

The equilibrium output of such a measurement is

given by the following equation:

E AX (15}
E/q= AT 144k '

where E/q is the sensitivity in mv/Btu/ft 2 -sec, (E/AT)

is the ratio of emf output to temperature difference

for the thermocouple pair in my/° F, AX is the distance

between the two points in inches, and k is the conduc-

Livity of the slab material in Btu/in. sec°F. The

sensitivity can be increased by "thermopiling," i. e.,

using multiple pairs connected in series.

The response time is given by

_kX 2
= 6.25_ (16)

where _ is the thermal diffusivity of the slab material.

This response time is defined here as the time re-

quired for the output to reach approximately 90 per-

cent steady-state.

SECTION III. RADIATION MEASUREMENTS

A. RECEIVING OF RADIATION BY TRANS-

DUCER

The amount of radiation absorbed by the sensor

depends on (1) the view-angle between the sensing

surface and the radiation heat source, (2) the radia-

tion transmission characteristics of the window shield-

ing the sensor from convective heat transfer, and (3)

the absorption characteristics sensing surface.

1. View Angle. The view field for the sensing

surface is illustrated below.

A 1 B 1

A 0 S 0

B 2

If the heat source is located entirely within the field

enclosed by A 0 - A 1 and B 0 - B l, all of the radiation

emitted by the source will be "seen" by the sensing

surface. If the heat source is located in the fields

A2-A3-A 1 and BI-B 3 - B 2, the source will be "seen"

only by a portion of the sensing surface. Any heat

source outside of the field enclosed by A 2 -A 3 and

B 2 - B 3 will be totally unseen by the sensor. For ac-

curate measurements of the radiant intensity at the

transducer location, the view field should be as near

180 degrees as possible.

An ideal window would transmit a high percentage

of the incident radiation with no variation in the trans-

mittance with spectrum. Unfortunately, most window

materials have good transmission characteristics over

only a limited spectral region. Transmittance as a

function of wavelength is shown in Figure 8 for several

window materials. Because of its mechanical sta-

bility, low cost, and availability, as well as trans-

mission characteristics, synthetic sapphire is probably

the most commonly used window material for radiation

measurements.

i 75 -- 75

50 50

25 _ 25

• ' _ 0 '
O0 5 10 0 5 i0

WAVELENGTH, microns WAVELENGTH, microns

8a. COMMON GLASS, 3mm THICK 8b. FUSED QUARTZ, 2.Smm THICK

z 1000_ _

o 7s

25

0 10

WAVELENGTH, microns

8c. SYNTHETIC SAPPHIRE, 1ram THICK

z 100_

75

_0

25

WAVELENGTH, mi_

8d. ROCK SALT, lmm THICK

FIGURE 8. TRANSMISSION CHARACTERISTICS

FOR TYPICAL OPTICAL MATERIALS
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The transmittance for two thicknesses of synthetic

sapphire for normal incidence is presented in Figure

9. A fairly uniform transmittance is indicated up to a

wavelength of between 5 and 6 microns. Depending on

the window thickness, a "cut-ofi _' wavelength may be

defined beyond which practica.ilyno radiation is urans-

mitred. The curves in Figure 9 were obtained from

the following equation:

= (1 - R) 2 e , (18)

where _ is the transmittance, R is the reflectivity, c_
is the absorption coefficient, a_l T is the thickness.

Fornormal incidence, R is obtained from the index of

refraction, n, by Equation (19).

(n + 1) 2. (19)

SOURCE TEMPERATURE

2000°R 4000°R

100 20

r'- -- WINDOW TRANSMISSION

| .... SPECTRAL DISTRIBUTION

s g

t

o_ SOURCETEMPEeATURE

4ooo°e
/" o

I I 2°°°°R o.s, _

I I \ \
I I

IIji I x _.

0 2 4 6 8 10 12 " 14

WAVELENGTH, mlcro.s

FIGURE 9. TRANSMITTANCE OF SYNTHETIC

SAPPHIRE AT ROOM TEMPERATURE

FOR NORMAL INCIDENCE AND SPEC-

TRAL DISTRIBUTION OF RADIATION

FROM A BLACK BODY

Occasionally, it is desirable to measure the beat
flux emitted f_rom a small area or surface of the beat

source. This may be accomplished by intentionally

limiting the view field to enclose only a small portion

of the emitting surface as illustrated below.

/--Areaviewe --Seosor
View Restrict=on

The heat flux, q', incident on the sensing surface, is

related to the heat flux, q, emitted from the surface

of the heat source, by the following equation:

q' = Fq, (17)

where F is the radiation form factor. This factor is

usually considered as part of the calibration constant,
which is determined when the transducer is calibrated

by exposure to a known heat source. It is necessary

that the calibration source completely cover the field

of view during calibration.

2. Window Transmission.

a. Properties of Window Materials.

Transducers for radiation measurements usually have

an infrared transmitting window to protect the sensor

from convective gases. As may be expected, the trans-

mission characteristics of this window are an im-

portant consideration in the utilization of the

transducer.

The index of refraction, n, and the absorption co-

efficient, c_, for synthetic sapphire axe given in

Figures 10 and ll,respectively.

In using a radiation transducer, it is desirable

that the spectrums of beth the calibration source and

the source to be measured lie within the wavelength

region of high window transmittance. If this is not

possible, then corrections must be made for the dif-

ference in spectrum between the calibration source

and the source to be measured. As an example, the

spectral distribution of a black body source at 4000"R
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is compared in Figure 9 with a black body at 2000°R.

The 4000°R source is assumed to be reasonably ap-

proximate the spectral distribution from a rocket ex-
haust plume at sea level, and the 20000R source is

typical of black body calibration sources. It is seen

that the higher temperature source is distributed more

in the higher transmitting wavelength region than the

lower temperature source. Numerical integration of

the product of the window (0. 0t5 inch thick) trans-

mittance and the spectral intensity shows that 84 per-

cent "of the radiation from the 4000°R source is

transmitted, whereas only 71 percent of the radiation

from the 2000°R source is transmitted. Thus, the

sensitivity of the transducer is about 18 percent greater

for radiation from the 4000°R source than from the

2000 ° R calibration source.

b. Purging the Window Surface. A secon-

dary problem resulting from the use of infrared

transmitting windows is particle accumulation on the

window surface during measurements in a smoky or

otherwise "dirty" environment. Such an accumulation

over the window surface would absorb a large percent-

age of the incident radiation, preventing transmission

through the window.

The most commonly used purging device is a

nitrogen flow system designed to prevent the particle

containing gases from reaching the window surface.

Experience has shown that it is not easy to design a

satisfactory gas flow purge system. A poor design

will create a low pressure region in the vicinity of the

window so that there is a flow of gases containing par-

ticles toward the window instead of away from it.

3. Sensor Absorption. A statement similar

to that applied previously to window transmission

characteristics may be applied to sensor absorption;

that is, it is desirable to have a high percentage of

absorption with very little change in absorption with

spectrum. The reason for similarity in desirable

window transmission and sensor absorption charac-

teristics is obvious; both determine the amount of the

incident radiation to be actually detected by the trans-

ducer.

Table I, from Reference 3, gives the absorptivity

of various materials as a function of wavelength.

TABLE I. ABSORPTIVITY

Wavele_th,

24 8.8 4.4

.99;Acetylene soot .97 .99

Black (Cu O) .96 .85

Camphor soot .94 .98 .99

Lampblack paint .96 .96 .97

Platlnumblack .92 .91 .95

0.95

.99

• 76

0.60

• 99

.99

.97 .97

.97 . .98
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Acetylene soot, camphor soot, and lampblaekpaint

• are seen to exhibit superior absorption characteristics.

However, platinum black is the material most fre-

quently used for transducers because of its stability

and bonding characteristics. Also, experience has

shown platinum black to maintain essentially constant

absorption characteristics up to about 500- 600OF,

which corresponds closely to the sensor temperature

of' a Garden gauge transducer at the usual maximum

design output of 10 my.

The vapor-deposited metallic blacks, especially

gold black, have beenfotmd to exhibit superior absorp-

tion characteristics over a very wide wavelength range.

The deterioration of these blacks at elevated tempera-

tures, however, renders them unsuitable for most

heat flux measurements.

B. RECOMMENDED DESIGN AND EXPERI-

MENTAL RESULTS OF A RADIATION

TRANSDUCER

The preceding discussion on radiation meas-

urements has pointed out the following desirable

criteria for radiation transducers:

1. a view angle as near 180 degrees as practical,

2. a high percentage window transmission over

the wavelength region containing the spectra of the

calibration source and the source to be measured.

3. an effective purge system for keeping the win-

dow clean, and

4. a receiver coating that will result in a high

percentage absorption of the incident radiation.

A schematic of a recommended design which

satisfies as much as practicable of each of the above

criteria is shown in Figure 12. The relatively narrow

view angle (approximately 90") is a result of the

purging requirement. Thus far, an effective gaseous

purge has not been developed which has a wide view

angle.

The purge system is designed to use gaseous

nitrogen at 100 psig with a resulting flow rate of ap-

proximately three standard cubie feet per minute. The

nitrogen enters the purge tube at the rear of the trans-

ducer and flOWS out over the window and through the

front aperture. The purge was tested by exposing the

transducer to a large smoky flame created by burning
kerosene in a five gallon tub: The transducer was

positioned so that the w_ud _onstantly directed the

flames into the transducer's outer surface. The purge,
system not only maintained a completely clean window

surface, it also cooled the body of the transducer.

F L"ONSTMITMI FOIL

_P f-_/ r_SY_THETI¢SApiI_HmE

W1NDOW 1.015" THICK)

STAINLESS STEEL _b._._]L_--_ 3/4 - IONC-2A
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COPPER I_r.AT SINK -- _ _1"_ Lf:_311.b3

40 GAUGE COPPER WIRE -- _%_fJ] I

CERAMIC INSULATOR --
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"-_ _L_ N0. 22 GA. STRAIIDE3D COP'PER

WITH FtME]tC,.L.ASS INSULATION
IKIRGE TUBE AND STAINLESS STEEL OVER-

BItAID.

HYPING

!1
FIGURE 12. RECOMMENDED DESIGN OF A

RADIATION TRANSDUCER.

The window material chosen for optimum trans-

mission and mechanical characteristics was synthetic

sapphire. Platinum black was chosen for the sensor

coating because of its favorable absorption character-

istics and stability up to elevated temperatures.

The type of sensor chosenfor this application was

the Gardon gauge (see preceding section on sensing

devices) because of its steady-state output which is

proportional to heat flux. Shown in Figure 13 is the
15
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FIGURE t3. EMF OUTPUT OF A RADIATION

TRANSDUCER AS A FUNCTION OF

HEAT FLUX.
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experimentally obtained curve of emf output versus

heat flux of the transducer shown in Figure 12. It is

seen that the response of the transducer is essentially

linear with asensitivity of about 0.2 mv/Btu/ft 2 -sec.

The sensitivity of this instrument may be altered if

desired by changing the dimensions of the constantan

disc (see Section III. B. i}.

SECTION IV. CONVECTION MEASUREMENTS

A surface temperature discontinuity will likewise

alter the local film coefficient because of the finite

time required for the temperature gradient in the

boundarylayer to adjust to a new surface temperature.

A method for predicting the change in film coefficient

due to a step change in surface temperature on a flat

plate is given in [ 4] for air flowing horizontally across

the plate. The following equation is a variation of this

method for the case of the plug-in type transducer at

a temperature different from its surroundings:

A. PROBLEMS OF CONVECTION MEASURE-

ME NT

Certain problems exist in the measurement of

convective heat flux which are not encountered in ther-

mal radiation measurements. The intensity of radia-

tion falling on a given surface is not dependent on the

condition of the surface or even whether the surface

is materialor simply a defined surface in space. Thia

is not true, however, in the case of convection. Con-

vective heat transfer is that heat which is conducted

from a moving fluid through a material surface bound-

ing the fluid. The intensity of convective heating is

dependent upon the material surface temperature and

the fluid flow properties. It is apparent, then, that

the presence of a measuring instrument may have a

large effect on the intensity of convective heat transfer

at the point of measurement. The measurement is

usually intended to determine the heat transfer which

would exist at the point of measurement if the instru-

ment were not there. It is necessary, therefore, to

consider the effect of the presence of the instrument

upon the measured heat transfer rate.

The convective heat flux, qe, to a surface is

found from

qe=h(Tr-Tw ) =-k (8_) ,
Y=0

(20)

where h is the local film coefficient, T r. is the re-

covery temperature of the fluid, T w is the surface
temperature, k is the thermal conductivity of the fluid,

and (ST/ST)y=0 is the temperature gradient in the

fluid boundary layer at apoint on the material surface.

The local film coefficient, h, depends on the flow

conditions in the boundary layer. It is obvious that

physicalchanges inthe surface structure cause by the

presence of the instrument could greatly alter the fluid

flow in the boundary layer, and hence alter the local

film coefficient.

h'/h = A(D/L) + B(D/L)
T- T'

, (21)

where h'/h is the ratio of the local film coefficient at

the center of the transducer surface to the film coef-

ficient for a uniform surface temperature, T' is the

temperature of the transducer surface, T is the tem-

perature of the surrounding surface, Tg is the free-

stream temperature, and A and B are functions of the

ratio of transducer surface diameter D to distance L

from the leading edge. The functions A and B are

presented graphically in Figure 14. As an example,

consider a transducer one inch in diameter mounted in

a flat plate at a point nine inches from the leading

- T'
h'/h=h(D/L) + B(D/L) i T'

g
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edge, thus resulting in a ratio, D/L, of 0.11L Let

• the free-stream temperatare, the fiat plate tempera-

tore, and the transducer surface temperature be

200°F, 100°F, and 125°F, respectively. From Figure

14 and equation (2t), a ratio, h'/h, of 0. 72 is deter-

mined. Thus, the transducer measures ahe_t transfer

rate which is only 72 percent of the rate which would

have existed at that point for auniform plate tempera-

ture of 125°F.

Because plug-intransducers are seldom perfectly

installed andnearly always create a surface tempera-

tture discontinuity, the suitability of such instruments

for convection measurements is highly.questionalde.
In some instances, it may be preferable to determine

the convective heat flux to a wall by measuring the

_emperatare history of the wall itself rather than using
a transducer.

The heat flux, q, to a point on the surface of a

thermally thin wall of constant thickness, 5, is

q=pc6 (-_) -SkV2T, (£2)

where p, c, and k are the density, specific heat, and

thermal conductivity, respectively, of the wall ma-

terial; aT/at is the time rate of temperature change

at the point of measurement; and

a z T a z T

V2T - OX2 + _--_--, (23)

where X and Y are rectangular coordinates on the

two-dimensional wall.

For an isothermal wall, V_T vanishes, and the

measurement of the temperature history at a single

point is sufficient to determine the heat flux. For a

nonisothermal wall, VZT must be evaluated as well as

0T/_t. In evaluating VZT, however, the temperature

history must be measured at more than one point.

Five measurements as shown on the following sketch

will suffice for this evaluation.

m-l,,

m_ n+l

m, _n m +1

m, n- 1

'_--AX_----AX

AY

V2T may be determined from equation (23) at any

given time by the following approximation:

aZT 1
+ - 2T ] (24)

aX 2 =_2-[Tra+l, n Tin-l, n re,n"

a2T 1

ay z = Ay 2 [Tm,n+ l + Tin,n_ 1 - 2Tin,n]. (25)

B. CALIBRATION OF CONVECTION TRANS-
DUCERS

_A transducer designed to measure primarily

convective heat flux really senses only the heat flux

which enters the sensor; it is unable to distinguish be-

tween radiation and convection. Therefore, the in-

strument may'be calibrated with any heat source of

known intensity, either radiation or convection. The

various effects discussed in the preceding section

make it extremely difficult, if not impossible, to

establish a known intensity of convective heat flux to

a transducer. Therefore, the most accurate and

practical calibration is achieved by coating the sensor

with amaterialwhose absorptivity is known within ac-

ceptable limits and exposing the instrument to a radi-
ant heat flux of known intensity.

C. CONVECTION MEASUREMENTS IN

PRESENCE OF THERMAL RADIATION

In many applications involving a measurement

of convective heat flux, there is also present a signi-

ficant amount of thermal radiation; and, although the

radiation portion can be measured without sensing the

convective portion (see precedingdiscussion on radia-

tion measurements), the converse is not always pos-

sible. Convective measurements have been attempted

in which the sensor surface was plated with a highly

reflective material such as gold to prevent radiation

absorption by the sensor. Particle accumulation and

tarnishing in a smoky or otherwise dirty environment,

however, tend to increase radiation absorption so that

the measurement includes the convective portion of

the total heat flux plus an unknown fraction of the

radiationportion. The sensors of convective heat flux

transducers, therefore, are usually coated with such

high absorptivity material that the total heat flux is

measured with no attempt to isolate the convective

heat flux cauthenbe determined by making a separatet

portion. The convective heat flux can then be deter-

mined by making a separate radiation measurement

and subtractingthe measured radiation from the meas-

ured total heat flux.
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D.RECOMMENDEDDESIGNANDEXPERI-
MENTALRESULTSOF CONVECTION

TRANSDUCER

As pointed out in the preceding discussion on

convection measurement, total heating transducers

should be designed so that the surface geometry and

temperature distribution at the point of measurement

be disturbed as little as possible. The recommended

design shown in Figure 15 has an external configura-
tion which allows a minimum disturbance of the sur-

face geometry when the instrument is installed. The

surface temperature distribution, however, will be

altered somewhat by the instrument.

1. 25 /

CONSTANTAN POlL

/-,

J 36 GA. BARE COPPER WIRE.435

CERAMIC TUBE

_ COPPER

1/2 - 20NF- 2A

EPOXY RESIN

\'xY>

TEFLON COVERED COPPER

SHIELDING, 1/16 TUBULAR BRAID

HYRING

DIMENSIONS IN INCHES

FIGURE 15. RECOMMENDED DESIGN OF A

TOTAL HEATING TRANSDUCER.

The sensor surface of the instrument is coated

with platinum black so that any significant amount of

thermal radiation present will be absorbed by the in-

strument. As in the case of the recommended radia-

tion transducer design, platinum black was chosen for

its favorable absorption characteristics and stability

up to elevated temperatures.

Figure 16 shows the experimentally obtained curve

of emf output versus heat flux of the transducer in

Figure 15. The response is essentially linear with a

sensitivity of about 0.3 mv/Btu/ft _ -sec.
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EMF OUTPUT OF A TOTAL HEATING

TRANSDUCER AS A FUNCTION OF

HEAT FLUX.

SECTION V. CALIBRATION HEAT SOURCES

A. BLACK BODY SIMULATOR

An ideal heat source for accuracy considera-

tions is the black body. Both the spectral distribution

and the radiant intensity of a black body heat source
are well defined functions of the source temperature.

A perfect black body is one whose surface absorbs

all the radiant energy incident upon it; that is, its ab-

sorptivity is equal to unity. Likewise, by Kirchhoff's

Law its emmisivity is unity. Although a perfect black

body does not exist in nature, it can be very closely

approximated by a small hole in the side of a hollow

enclosure. Theoretically, perfect absorption (or

emission) will take place only when the area of the

hole is infinitely small when compared to the total area

of the hollow enclosure. Practically, an approximation

sufficiently accurate for experimental purposes is ob-

tained by using a hole in the end of a hollow cylindri-
cal tubewith the tube diameter 1/4 the tube lengthand

the hole diameter 1/4 the tube diameter. The varia-

of temperature over the enclosure surface must be

Very small.
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The black body simu_tor is generally handicapped

• by fairly long heating and cooling periods required to
maintain the necessary uniform temperature distri-

bution within the heat source. For this reason, most
routine calibration is performed with the use of a heat

source- withrapid response such as a bank of infrared

heat lamps or an electrically heated graphite slab.

B. ELECTRICALLY HEATED GRAPHITE SLAB

Another widely used heat flux simulator is the
electrically heated graphite slab illustrated below:

Transducer
robe

Cal ibrated

,r/Power I_eads,,_

q_---Graphite Slab----_J

Buss Bars-----_l . I

Top View Side View

The slab is heated internally by electrical con-
duction. To prevent oxidation of the graphite,an argon

purge is provided to eliminate atmospheric oxygen
from the slab environment. The heat flux is monitored

by a reference transducer positioned symmetrically
with the transducer to he calii_atod. This type of heat
source has been known to achieve heat flux levels on
the order of 200 Bttt/ft 2 -sec.

The chief disadvantages for this type of source

are its expensive construction and spectral distribu-
tion over a longer wavelength region than rocket ex-
haust plumes.

C. QUARTZ LAMP BANK

Probably the most versatile heat flux source
is a bank of quartz infrared heat lamps. The primary
assets of a quartz lamp bank are (1) fast response,
(2) spectral distribution similar to rocket exhaust

plumes, and (3) relatively economical construction.

1. Description of Lamp Bank Facility. The

quartz lamp bank test facility located at Heat Tech-
nology Laboratory, Inc., in Huntsville, Alabama, is
madeupof fivemajor parts, which are integrated into

a test facility having the capabili_ of being contin-
uously controlled from 0-150 Btu/ftZ/sec. The major
components of the facility are (1) the oil-cooled quartz

lamp bank, (2) a Thermac temperatare and power
controller model SPG 5009S with "Data-Track" pro-
grammer, (3) an oil cooling system, (4) an x-y plot-

ter, Electronic Associates, Inc., Variplotter model

II00E, and (5) Honeywell strip chart recorders. Fig-
ure 17 is a block diagram of the facility.

4.

!
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FIGURE 17. BLOCK DIAGRAM OF LAMP BANK
FACILITY.

The quartz lamp bank consists of twenty quartz
infrared General Electric 2000-T3 230-250V lamps
arranged parallel with filaments spaced one-half inch
apart. The lumps are held at each end by off-cooled

brass buss bars. The lamps are backed by a gold
platedreflectorwhichis also oil cooled. A schematic

of the lamp bank is given in Figure t8.
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FIGURE 18. SCHEMATIC OF QUARTZ LAMP BANK.

The Thermac power controller, a phase controller

power regulator using ignitrons connected in parallel
opposition, is capable of controlling the voltage to the
lampbankfrom 0-400volts at 130 kw maximum power.

This unit can be either manually operated in set point
mode or straight manual mode or externally program-

med by using the "Data-Track."

The set point control enables the operator to "dial

in" a specific value of heat flux, and the unit will
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maintainthe heat flux independent of the external con-

ditions. The manual control is merely a voltage con-

trol.

The "Data-Track" unit permits programming of

the voltage to the lamp bank which can be directly re-

lated to preprogrammed heat flux for tests to simulate

actualconditions. Tests upto 130 seconds can be run.

The cooling system for the lamp bank is used to

supplement normal air convective cooling of the lamp

holding fixture and the reflector when extra high heat

fluxes (for tests of long duration) are being achieved.

The cooling system employs a circulating oil system.

Transformer grade cooling oil is pumped from a

reservoir through fluid passageways provided in the

lamp holding fixtures, through heat exchange coils

soldered to the bank side of the reflector plate, and

backtothe reservoir. Neoprene rubber tubing is used

to connect the holding fixtures and reflector heat ex-

changer with the reservoir; this, with the grade of oil

used, provides the necessary electrical isolation. A

water-cooled heatexchanger inserted in the oil reser-

voir is used to dissipate the heat removed from the

system.

The cooling system has a variable range cooling

capacity. This is achieved by a by-pass flow value

which restricts the oil flow to the lamp bank. With

the by-pass open the lamp holding fixtures receive one-

fourth gallon per minute, and the reflector plate re-

ceives one and one-third gallons per minute. Water

flow rates of up to one gallon per minute are possible

through the water-cooled heat exchanger in the

reservoir.

The Variplotter is used for recording output of

the instrument being tested versus heat flux exposure.

The output of a Gardon gauge type water-cooled refer-

ence standard of the appropriate range is connected to

the x-axis of the plotter for the measurement of heat

exposure. The y-axis is generated by the output of a

Gardon gauge type test instrument. The performance

of the test instrument is evaluated from the resulting

curve. Inthe case of slug type calorimeters, a Gardon

gauge type water-cooled reference standard is used to

establish heat flux level. The output versus time data

for the slugtype calorimeter is taken by using a Min-

neapolis-Honeywell strip chart recorded or the Vari-

plotter utilizing a time base generator which produces

voltage input for the x-axis proportional to time.

Range calibration for both types of recorders is

checked with anElectronic Development, Inc., preci-

sion voltage source which is traceable to the Bureau

of Standards.

2. Lamp Bank Performance. To determine

the operating performance of the lamp bank, an exten-

tive survey of the facility was made. A test survey

was conducted using two 50 Btu/ft2/sec Gardon gauge

type _ater-cooled standards. One was placed directly "

under the center of the lamp bank, mounted in a fixed

position in glass rock, and the other was placed in a

movable section of glass rock. Both standards were

in aplane parallel and two and one-fourth inches below

the lamp bank. The 50 Btu/ft2/sec stationary standard

was used as a reference, and by moving the other

standard from the center to the front (from center

along a 45 degree diagonal to the corner and from

center to right side), different heat flux levels with

respect to the center were acquired. The movable

standard was initially placed one and five-eighth inche s

from the stationary standard and then moved to eight

different stationary points. The eight stationary testing

points were one-half inch apart with reference to the

the last testing point. With the stationary reference

standard connected to the y-axis of the Variplotter and

the movable standard connected to the x-axis, heat

flux levels were recorded at each test location while

applying 0 to 50 Btu/ft2/seo of radiant heat to the ref-

ence standard.

Figure 19 is a contour plot made from the test

data, assuming symmetry for the four quadrants, at

the 50 Btu/ft2/sec heat flux level. This shows heat

flux decreasing from the center to the outer extremi-

ties of the lamp bank. The center heat flux is pre-

sented in Figure 20 as a function of lamp voltage.
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FIGURE 19. HEAT FLUX DISTRIBUTION UNDER

LAMP BANK.
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DERIVATION OF SLUG TRANSDUCER EQUATION

Equation (3) is derived by setting up the following

heat balance on the slug

qAO_ = C dT/dt + (l/R) AT, (A-i)

where q is the flux incident to the surface; A, _, and

C are the receiving area, absorptivity, and heat ca-

pacitance of the slug, respectively; @ is the fraction

of the flux incident on the transducer which actually

falls on the slug; R is the thermal resistance between

the slug and its surroundings; dT/dt is the time rate

of slug temperature increase; and AT is the tempera-

ture difference between the slug and its surroundings.

For convection measurements, • and _ are unity.

The above equation may be rearranged as follows:

q = (C/AO_) dT/dt + (I/RA¢c_) AT

or

(A-2)

q = K dT/dt + I_AT,

where

K = C/A@_ and e = 1/RC.

APPENDIX B

RESPONSE TIMEOF SLUG TRANSDUCER

The sing of finite conductivity is usually repre-

sented for purposes of analysis as a slab bounded by

two parallel planes with one surface heated and the

other insulated as shown in the sketch below. This

results in a one-dimensional temperature distribution

through the slab.

For a constant heat flux, q, through the exposed sur-
face and an initial slab temperature, T, of zero, the

temperature distributiun after exposure time, t, is

shown in [ 5] to be
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7j
n=l

(B-I)

where p, c, and a are the slab density, specific heat,

and thermal diffusivity, respectively.

Differentiating this expression with respect to

time yields

= _ -n 2 _ at n_X
aT --q- [i+2 _ (-1) n exp. ---7-- cos"_ ].
at pc5

n=l (B-2)

The series terms are seen to decrease rapidly

with increasing n; therefore, all terms for n greater

than one are neglected. For a point on the back sur-

face of the slug, equation (B-2) becomes

aT q Ii (=___)], (B-3)-- _- - 2 exp.
at pc5

The measured heat flux, qm, determined from

the temperature-time derivative is

qm = pc5 (DT/Dt). (B-4)

_ombining equation (B-3) and (B-4) yields

-_at
q/qm = I - 2 exp. _" (B-5)

It is seen that this ratio depends only on the Fourier

number, at,/5 2.

The response time, t*, for a slug may be defined

as the time required for the measured heat flux, qm,

to reach (1 - 2/e2), or 73 percent of the actual heat

flux. From equation (B-5) it is seen that the Fourier

number be 2/_, or 0.203, to satisfy this criteria.

The response time, then, is given by

t* = 0. 203 52/a • (B-6)

This equation is presented graphically in Figure 2.

APPENDIX C

RESPONSE TO CONSTANT H_AT FLUX OF A SLUG

BACKED BY A SEMI-INFINITE INSULATOR

A sketch of a slug backed by a semi-infinite insu-

later is shown below.

'-ITI " -'T
slug insulation

The temperature history of this model is obtained
from the solution of the one-dimensional Fourier

equation:

a2T/OX == (l/a) aT/Or, (c-t)

where T is the temperature at a distance X into the

insulation at time t and a is the thermal diffusivity of

the insulation material. Equation (1) is subject to the

following boundary conditions:

q =pc6 ffr/0t- k _T/DX at X= 0 (C-2)

T=0 att=0 (C-3)

T = 0 at X = .o, (C-4)

where q is the heatflux to the front surface of the slug,

k is the thermal conductivity of the insulation material,

and p, c, and 5 are the density, specific heat, and

thickness, respectively, of the slug.

Equation (2) is derived from asimple heat balance

onthe slug assuming that the slug temperature is uni-

form and equal to the insulator temperature at the

interface. The contact resistance at the interface is

assumed to be zero, and all thermal properties are

assumed to be constant.

The LaPlace transform of equation (C-i), taking

into consideration the boundary condition given by

equation (C-3), is

d2T/dX 2= (s/a)'l", (C-5)

where T is the transformed temperature and s is a

constant introduced by the LaPlace Transformation.

Solving for the transformed temperature, "T,

taking into consideration the boundary condition given

by equation (4), yields

Y = A exp. (-X _-'_) (C-6)

where A is an integration constant. Applying the

LaPlace transform to the boundary condition given by

equation (2) yields

q/s = pcSs'T - k d-T/dt. (C-7)

Applying this transformed boundary condition to

equation (6) yields
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"T=qexp. (-X_'_)/ [s(pcSs+K_-_)]. (C-8)

This transform is found in the table of LaPlace

transforms of [ 5] to yield the expression:

F 2 (-x, y
T - pc6 Llr_ _ exp. _4_t ]- hS_t erfc (X/2_-_)

(a)]+ _ exp. (hX + hS_t) erfc + I_

(C-9)

where h = k/pc6_.

The slug temperature history is found from equa-

tion (C-9) for X equal to zero:

T = pc6 _- h--_t i -exp. (h2_t) erfc (_

= Zi p-_ct5. (C-10)

The slope of the temperature-time curve is found from

the first derivative of equation (C-10):

dT/dt = (q/pc6) exp.

or

(hSczt)erfc (Ir_) = Z2 q/pc6,

(c-il)

q = pc5 (dT/dt)/Z 2.

The conduction correction factors, Z i and Z2, are

presented in Figure (C-I) as a function of the param-

eter _["_. The correction factors are seen to equal

unity initially (at t = 0), regardless of the thermal

diffusivity, _, of the insulating material. Thus, the

heat flux may be determined from the initial slope of

1°0

0.8

_0.6

0.4

0.2

-- Zz-eh_ atedc(h_£i} --

1.0 2.0 3.0
h_

FIGURE C-1. CONDUCTION CORRECTION FAC-

TORS, Z1 AND Z2, AS A FUNCTION
OF THE PARAMETER h_'t'.

the temperature-ULme curve without considering heat

losses. Likewise, for a perfect insulator (_ = 0), the

conduction correction factors are equal to unity at any
time.

Presented in Figure C-2 is the temperature his-

tory calculated from equation (C-10) for a 0. 010 inch

thick copper slug backed by a semi-infinite glass in-

sulator and exposed to a constant heat flux of 10

Btu/ft2-sec. This temperature history is compared to

the temperature history of a slughaving no heat losses.

200 .....

o

FIGURE C-2. TEMPERATURE H_STORY OF A

SLUG BACKED BY SEMI-INFINITE

GLASS INSULATOR FOR A CON-

STANT HEAT FLUX.

APPENDIX D

THEORY OF DISC-ROD SENSOR

The pertinent geometrical dimensions of the disc-

rod sensor are shown in the following illustration (see
discussion in body of report) -"

q

#// / //f

!
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Applying a heat balance to the system yields

_D 2 dAT l rd 2 dAT K wd2

= PcCe'-_5--_-+_pKCK---_-I _ +----_---4-AT,

(D-i)

where q is the absorbed heat flux; AT is the tempera-

ture difference between the two ends Of the rod; and p

e, and k are the density, specific heat, and thermal

"conductivity, respectively, of the copper (subscript

c} and constantan (subscript K}. A uniform tempera-

ture distribution is assumedover the copper disc, and

a linear temperature distribution is assumed along the

constantan rod with the heat sink at constant tempera-

ture.

Rearranging equation (D-2) and integrating yields

-t/t*
AT = AToo (1 - e ), (D-2)

where

_*_ q - k (D-3)

and

2 6 PcCc + K
t*= 0.5 I pKCK K

(D-4)

The sensitivity is found from equation (D-3) by

converting the equilibrium temperature difference to

thermoelectric emf, E, for the copper-constantan pair

and by substituting into the equation the value of the

thermal conductivity, k:

E/q = 0.5 1, " (D-5)

where the sensitivity, E/q, is in mv/Btu/ft2-sec, and

the rod length, 1, is in inches.

Inserting the copper and constantan properties

into equation (D-4)yields the expression for response

time, t* :

t* = 50 [1 +2 (D/d) 2 (6/1)] 12 . (D-6)

APPENDIX E

THEORY OF SEMI-INFINITE SLAB SENSOR

This method of determining surface heat flux corL-

sists of determining the temperature gradient near the

surface by measuring the temperature at the surface

and at a position some distance from the surface as

shown in the sketch below.

T 1 T2

q ----_ "q'- ZXx --_e

I x _-I

The great heat flux, qm, as determined from the

temperature measurements, is given by

qm = k(T1 - T2)/AX = k_T/AX. (E-l)

To gain some indication of the accuracy and re-

sponse time of such a measurement, an analysis was

made of this measurement for the case of a constant

heat flux into the surface of a semi-infinite slab. The

temperature .distribution in a semi-infinite slab ex-

posed to a constant heat flux is given in [ 5] as follows:

T = (2_'_t/k) ierfe (X/2_f-_), (E-2)

where T is the temperature at a distance X into the

slab, and at the time t, q is the heat flux into the front

surface, a is the thermal diffusivity, and k is the

thermal conductivity.

The initial temperature (at t = 0) is assumed to

be zero at all points.

From equation (E-2), the temperature difference

from a point on the surface to a point a distance AX

from the surface is

AT = (2q_t,/k) [ (1/_'_'_) - ierfc (AX/_)]. (E-3)

Combining equation (E-l) and (E-3) yields

qm/q = (t/77) [ (1/*_-n_) - ierfc _?, ] (E-4)

where

=Ax/2 q- Y.
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The ratio given by equation (E-4) is presented in

-Figure E-I as a function of 7.

Presented in Figure E-2 is the ratio, qm/q, as a
function of time for a semi-infinite copper slab ex-

posed to a constant heat flux with AX.= 0. 3 inches. It

1.0

0.8 N_

\
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i \
0.4 TI T2

--I,xb-
0.2

&T'T 1 - T2

o I
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-z-oJq)01/_;_-u,kq]
q - ddi/2,t_"

qm-Z4

.'---K AT/AX

1.0 2.0 _.0

LvJ2_Z

FIGURE E-1. CORRECTION FACTOR, Z, FOR
DETERMINING SURFACE HEAT

FLUX FROM TWO TEMPERATURE

MEASUREMENTS

is noted that the ratio quickly rises to about 0. 9 and

then approaches unity very slowly. This is quite dif-

ferent from the exponential curves of Gardon type heat

transfer gauges in which unity is approached much

more rapidly after the initial rise.

1.0
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o.8 _ I _ I

!

qu-Zq Ax - 0.:3

0.6 q _ _J._ --

0.2 l

0 I
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TIME, t,
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FIGURE E-2. CORRECTION FACTOR , Z , AS A
FUNCTION OF TIME FOR A SEMI-

INFINITE COPPER SLAB.
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A SURVEY OF METHODS FOR GENERATING LIAPUNOV FUNCTIONS

BY

Co C° Dearmant Jr. and A. R. LeMay

SUMMARY

In 1892, in his now famous memoir, A. M. Lia-

punov, a Russian mathematician, derived a method

for determining stability properties of nonlinear dy-

namical systems which did not require any knowledge

of the solutions of the differential equations that de-

scribe the motion of the system.

The second method permits the determination of

stability properties of dynamical systems by using

suitable scalar functions of the state variables that are

defined ina phase space or motion space. These func-

tions are called Liapunov functions or v-functions, and

the sign of the time derivative, x;, with respect to the

equations of motion, has to be considered. Roughly,

if v_ -< 0, the motion is stable in some sense; other-

wise, it is unstable.

Liapunov's method consists of generating a func-

tionin the state variables which must possess certain

properties. If this Liapunov function could be exhib-

ted, certainconclusions could be made concerning the

stability properties of the dynamical system. There

are as yet no general schemes for constructing these

functions, but there are methods for generating Lia-

punov functions for special cases of certain types and

even for classes of certain dynamical systems.

This survey describes those methods which, with

possible extensions and modifications, appear to offer

the best hope for applications to practical nonlinear

dynamical systems.

There are many concepts of ,stability and insta-

bility for nonlinear systems, but whatever the concept

used the second method requires the generation of a

suitable v-function, and therein lies the principal dif-

°ficulty in applying the method to practical problems.

Presently available methods for generating Liapunov

functions lean heavily on the experience, ingenuity,

and good fortune of the investigator. No universally

applicable methods for generating Liapunov functions

are known to exist, but there are techniques that are

applicable to particular problems and to some classes

of nonlinear systems. Indeed, it might have been more

informative if the word "techniques" instead of "meth-

ods" had been used in the title of this paper because

none of the known procedures for nonlinear systems is

entirely methodical.

I. INTRODUCTION

Itis well known that it is possible to obtain infor-

mationabout the stability of a dynamical system with-

out solving the differential equations of motion that de-

scribe the behavior of the system. The Routh-Hurwitz

criterion is an example of the methods that may be

used for this purpose for linear systems. Liapunov's

so-called "second" or "direct" method is applicable

in this regard to both linear and nonlinear systems.

Furthermore, it is the only method known today that

is so applicable. The designation "second method" is

an unfortunate but apparently firmly entrenched mis-

nomer. It is not really a method at all_ it is more a

point of view or philosophical approach [ 28] 1

An extensive study has been made by the authors

of methods of generating Liapunov functions and of the

various nonlinear differential equations to which they

apply. Some of the methods appear to be applicable

only to quite special problems. In many cases, they

apparently yield Liapunov functions only for the ex-

amples givenin the paper in which they were present-

ed. Other methods are applicable only if the system

is known to have "small nonlinearities, " while still

others appeared to offer no hope in solving stability

problemsofinterest. The methods that are discussed

in this paper are those which seemed to be most in-

teresting and promising of further development toward

applicability to practical systems. For an exposition

of those methods which are not discussed in this paper,

the reader may consult the references in the bibliog-

raphy.

INumbers in square brackets refer to numbered ref-

erences in the bibliography.

An example of a nonlinear system which is of im-

mediate interest is the system defined by the equations

of motion of a guided space vehicle subject only to
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thrustandgravitational forces. At present it appears

that the task of generating Liapunov functions for such

a systemwill require extensive exploitation of modern

digital and analog computers. Because only initial

probing explol_ations have been made in investigating

this l_ssibfiity, any report of progress at this time

would be premature [28].

In this survey only autonomous nonlinear systems

will be treated. (The difficulties encountered in gen-

erating Liapunov functions for nonautonomous systems

have not yet been surmounted except in the simplest

cases. ) It will be assumed that the equations of mo-

tionof the dynamical systems under study may be ex-

pressed in vector notation as

= F(X), (1. i)

where I_ = (xl, _ ..... Xn), F(X) = (fl(X), f2(X),

.... fn(X)), and X = (xI..... Xn),WithF(X)pos-
sessing those properties which insure the existence

and uniqueness of the solution as well as their contin-

uous dependence on the initialvalues X o. Further, it

will be assumed that

F(0) = 0, (i.2)

i.e., that equations (1.1) shall have X = 0as the triv-

ial or equilibrium solution. This solution may be in-
terpreted as the desired terminal state of the dynam-

ical system. If the system possesses appropriate sta-

bility characteristics, its motion will approach this

solution or state as a limiting value from some pre-

vious state or from some perturbed state. The differ-

ential equations ( 1.1), therefore, will be referred to

as the equations of perturbed motion.

Liapunov's theory requires that the v-function,

v(X), possess certain properties. These vary with
the stability concept under consideration. For ex-

ample, ff it is required that the trivial solution be

simply stable, it is sufficient that v(X) and its first

partial derivatives be continuous in some open region

A around the origin, that v(O) = O, that v(X) be posi-

tive-definite, and that

n

= Z Dx.
i=i 1

(i. 3)

be non-positive. If the trivial solution is to be as-

ymptotically stable, it is sufficient that v(X) possess

the properties enumerated above and that % be negative-

definite. According to one concept of instability - due

to Liapunov - the trivial solution is unstable ff there

exists a function v(X) that has an infinitesimal upper

bound, a domain v(X) < O, and whose derivative, ¢¢,

da

• with respect to equatiofi (1.1) is negative-definite.

These theorems have been modified and extended by

Krasovskii, Zubov, Malkin, La Salle, Kalman, and

others.

At present the general questions relaVmg to the

existence of v-functions remain unanswered. However,

the question as to whether or not the sufficiency con-

ditions stated in the principal theorems are also nec-

essary has been largely answered in the affirmative

although some problems have yet to be resolved [20].

No attempt is made in this survey to extend the

theory of the stability of motion according to Llapunov's

second method. The aim is the modest one of present-

ingwhat our studies have shown to be the most premis-

ingmethods of generating Liapunov functions forprac-

tical nonlinear systems. However, in the interests of

brevity and simplicity, only elementary examples have
been chosen to illustrate the use of the methods dis-

cussed.

H. DERIVATION OF A LIAPUNOV FUNCTION FOR

LINEAR AUTONOMOUS SYSTEMS

Liaptmov developed a method for generating v-

functions for linear autonomous systems of differential

equations. Several other relatively simple methods

now exist for determining stability in these systems.

A study of the methods of generating Liaptmov functions

for linear systems is eminently worthwhile inasmuch

as many of the methods of constructing Liapunov func-

tions for nonlinear systems depend upon a knowledge

of Liapunov functions for linear systems. One method

for constructing Liapunov functions for linear systems

of the form _ = CX, where C is an n × n matrix with

constant coefficients, is as follows:

(1) Assume v(X) to he a homogeneous quadratic

form defined by the equation

n n

v(X) =xTAx= Z Z _ijxixj ' (2. i)
i=i j=l

where A is an n x n symmetric matrix of constant

(real) elements _...
zj

(2) Differentiate v(X) in (2.1) with respect to

the equations of motion and get

n n n

0x i xi flijxixj = xTBx'
i=l "= "= _J'%_'

where B is an n × n matrixwith constant elements flij"
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(3) Constrain _ to be positive-definite (or

negative-definite) and find the elements (_ijand flij
such that _ and v satisfyeither a stabilityor an insta-

bility criteria.

Two rather simple examples illustrate the method:

Example I.

Consider the linear differentialequation _ + a_ +

bx = 0, where a and b are real constants. This equa-

tion may be written in matrix form as

["3[_::]['3= _ X-- CX, (2.3)
_2 - x2

by the usual substitutions, xI = x and x 2 = _. In ac-

cordance with step (i) above, let

v = Otllxl2 + 2o¢12XlX2 + _t22x22 • (2.4)

Then

= (-2bal2)xl 2 + (2_11 -2a(_12 -2b_22 ) xix _ +(2a12 -2a_22) x22 . (2.5)

If we set

2b(_12 = I

2_12 - 2a_22 = -1 (2.6)

2_11 - 2aoL12 - 2b_22 = 0,

then

_'=- xi 2- x_ 2 . (2.7)

The solution of the system (2.6) yields

a 2 + b(b+l) (2.8)
°_11 - 2ab

t

a12 - 2b (2.9)

b+l

a2z - 2ab (2.10)

Thus

V

= [xlx_]

as + b(b+l) I b+i
2ab x1_ + b xlx2+ _ x_2

(2. li)

whichis of the form v = xTAx. According to Sylves-

ter's inequalities, v is positive-definite if and only if .

a 2¥b(b+l) > 0
2ab

and

(a'+ b(b+i)_2ab] (b+i_ (_i._'_2_)-_--b) > O, (2.12)

The inequalities (2. t2) require that the relations a > 0

and b > 0 be satisfied. These could aiso have been

found directly by meansof the Routh-Hurwitz criteria.

The following example illustrates the increasing

difficulties encountered in deriving Liapunov functions

for higher order systems.

Example 2.

Consider the third order linear differential equa-

tions "_" + a_" + b_ + cx = 0 with constant coefficients

a, b, e. The matrix form of the equation is

• = 0 X2

L_3j -b - x 3

+--)_ = cx. (2.13)

Let v be the quadratic form

v = xTAx, (2.14)

where A is a 3 x 3 symmetric matrix with constant

coefficients (_ij; i=1,2, 3; j=1,2,3; and X=col(xlx2x3).
Differentiating (2. i4) with respect to the equations

(2.13) gives

= xT[BTA + AB]X. (2.15)

Now, constrain the right member of (2.15) so that

= _ (xi z+x2 2+x32) . (2. 16)

Then,

BTA +AB=- I, (2.17)

where I is a 3 x 3 identity matrix. From equation

(2.17), the elements _ij of A are obtained.
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_ b(ab-c)+c{ac +a2 + c2)
c_ll - 2c (ab-c)

c_ + b(a z + c2)
as = _21 = 2c(ab-c)

1

_t3 -- <_31 Zc (2.18)

a(a 2+ac+cz)+c (b 2+b+l)
<_22 =

2c ( ab-c )

ac.l-a 2 +c 2

_zs = _,- 2c(ab-c)

bc+c+a

_u - 2c(ab-c)

SylvesterVs inequalities become

bc+c+a
> 0

2c(ab-c)

_+c(ab-c) j >0 (2. 19)

IAI = dot A > 0.

Through tedious but elementary algebraic manipula-

tions, it maybe determined that the inequalities (2.19)

are satisfled if a • 0, c > 0, and ab-c > 0. Again, the

Routh-Hurwitz criteria would have provided the same
resulL

HI. AIZERMAN'S METHOD

There are twowell-known methods for generating

Liapunov functions for systems with "small" nonlin-

earities. Aizerman's method is one of these. Kras-

ovskii's methodis theother; itwill be discussed in the

section following.

Aizermanproposeda relatively simple procedure

for generating Liapunov functions for nonlinear auto-

nomous systems. Hismethod is based on a procedure

for generating Liapunov functions for linear systems,

and it is applicable to systems containing one or more

"slightly" nonlinear elements. For simplification it

will be assumed that there is only one nonlinear ele-

ment in the systems to be discussed.

Aizerman's method consists essentially in approx-

imating the nonlinear element (or elements) of the

nonlinear system by linear elements and then finding

a Liapunov function for the resulting linear system.

The Liatmnov function thus foundis then applied to the

nonlinear system, and a domain over which stability

(or instability) exists is determined. The following

example illustrates the method.

Example 1.

Consider the nonlinear differential equation

_+ak+ f(x) = 0, (3.1)

whereaisarealconstant(> O) and f(x) is a "slightly"

nonlinear element. Further, let f(x) be expressible
in the form

f(x) = hx+ g(x), (3.2)

where h is a real constant. Then (3. l) may be ex-

pressed in the form

" 0;[-:-:][:I+[-+I ++
by means of the usual substitutions x 1 = x and r_ = _.

If q(x 1) is sufficiently small, equation (3.3) maybe

approximated by the equations

(3.4)

Assume

v = _ttxlZ+2_xtx2+ _z . (3.5)

Then

= -2_h_ 2 + (2_11 -2a_ -2_2h) xl_
(3.6)

+(2_ -2a_22) g2 .

Constrain the right member of (3. 6) so that

= - x_ - x__ (3.7)

Then it may be determined that

a 2 +h(h+l)
sli - 2ah (3.8)

1

c_12 - 2h (3.9)

h+l

_22 - 2ah " (3. i0)
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Thus, (3.5) becomes

a 2 +h(h+l) 1 h+l
v = 2ah xl2 + h xlx2 + _ x22 ' (3.11)

which is positive-definite for h > 0, a > 0°

As may be determined from (3.3) and (3.1t)

f(xi) I l+h l+h f(xl) -1-v = hx'---_ xlz + - a + ah x I xlx2+ xzz " (3. 12)

By Sylvester's inequalities it may be determined that

-_ is positive-definite if and only if

f(x,)

hx I
-- > 0 (3.13)

( )2f(x,) i (hx, - f (x,)) (l+h)
hx I > _ ahx l

The inequality (3.14) is satisfied if and only if

(3.14)

(_1) z " _l < (_1) z

It may be noted that (3.15) is but one domain for

asymptotic stability. Using the equation ( 13. t), page

59 of Reference 35, with obvious substitutions, and the

procedure on page 60, it may be determined that the

domain of stability is given by the relation

0 < _ < _ , (3.16)
Xl

which, of course, is less restrictive than the relation

(3.15).

IV. KRASOVSKII'S METHOD

Krasovskii considered the autonomous nonlinear

system

= F(X), (4. L)

which possesses the properties of the system (1.1).

The Jacobian matrix of F(X) is

fl O fl

ax 1 ........ ax n

J

of af
n n

...,oo°.+

Ox 1 0 xn

aF
-- (4.2)

OX

Krasovskii proposed and proved the following the-

orem [ 17] :

"In order that the trivial solutionof (4. 1) be glo-

bally asymptotically stable, it is sufficient that there

exist a positive symmetric matrix

E J_11 ...... (_ln

h = (4.3)

O_ni ...... Otnn

with positive eigenvalues, such that the symmetric ma-

trix C = (Cik) where

= __A_

Cik = ij + %j axi]
(4.4)

has the eigenvalues X. (X), (i = 1, .... n) which uni-
1

formly satisfy the conditions

k <- T (T > 0, i = 1,2 ..... n) (4.5)
i

for all x. and 7 is a real constant. " (For proof, see

Referenc_ 31, pages 91-94.)

To apply this theorem to anonlinear system, it is

necessary to exhibit the matrix A of the theorem. To

do this let

n n

v = _ _ ozijfifj = FTAF (4.6)
i=1 j=l

Then

= F T (AJ + jTA) F,

where J is the Jacobian matrix of (4.2).

Now, v can be constrained to be positive-definite,

and Sylvester's inequalities can be applied to _ to de-

termine the stability bounds.

Although it might appear that Krasovskii' s method

is basically the same procedure as Aizerman's, there

is one major difference. Krasovskirs method makes

use of a v function which is a quadratic form in the

components fi of F. These components are the system

velocities. Aizerman's method considers v-functions

which are quadratic in the state variables.

As an illustration of the metho.d, consider the ex-

ample of the previous section that was used to illus-

trate Aizerman's method:
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ExampleI.

_* + a_ + f(x) = 0, a > 0 (4.7 5

Let

_ = f1(X) =x

x2 = f2(X) = -ax2-f(xl) (4.8)

Then

fl(X) -- :¢2 = f2(X) (4.9)

df(xl)
f2(x) =-a_- dx1 fl(X) (4. io)

Let

v -- qllfl2(X) + 2ql2fl(X)f2(X) + _22f22(X). (4. li)

Then

, ,:o ,(.o-.- o
(4. i2)

Now .assume that f( x 1) can be written in the form

f(xl) = hx i+q(x l) , (4.13)

with q(xl) small so that

df(xl5
-" h. (4.14)

dx l

In Example i, _ectaon 2, the right member of (2.5)

was constrained so that _} = -xl 2 - x22. In Krasovskii's

method the right member of 4 is constrained so that,

analogously, for this example

-- -fl2(X) - f22(X) • (4. 155

Then, with

df (xp
= h,

d_

it follows that

a 2 +h(h+l)
_II = 2ah

h+l
°/22 -- 2ah

(4. t65

(4.17)

(4.18)

For the values of _li, c_n, _22, Sylvester's inequal-

ities show that vispositive-definite if and only if a > 0

and h > 0. Likewise, it can be shown that _ is

negative-definite ff and only if

df(x l)

h -- > 0 (4.19)
dx,

and

_, -(2-_1 h - dx, >0.
(4.20)

Inequalities (4. 19) and (4.20) are satisfied ff

(4.2 t )

Inequality (4.21) is a sufficient but not a neces-

sary condition for asymptotic stabilityof the equilib-

rium solution of the system (4. 7).

Basically, Krasovskii's method possesses most

of the advantages and disadvantages of Aizerman's

method. However, there are some systems which do

not lend themselves to Aizerman's method, whose e-

quilibrium solution can be proven to be asymptoUcally

stable by Krasovskii's method and vice versa.

These two methods are applicable in the study of

"slightly" nonlinear systems, but in many practical

systems they are not applicable. Of course, what is

desired is a method of generating Liaptmov functions

that is applicable to at least large classes of systems.

Some of the m_thods which appear to offer hope inthis

problems are discussed in the following sections.

V. ZUBOV'S METHOD [20], [56], [57]

Zubov's method for constructing Liapunov func-

tions for a given differential equation requires the so-

lution of a partial differential equation which may, in

some cases, be obtained in closed form.

Zubov considered the stability of the equilibrium

of nonlinear autonomous systems

= F(X) (5.1)

with the properties described for ( 1. i). The basis of

Zubov's method rests in the following theorem:

Let A be an open domain of the phase space, an

n-dimensional Euclidean space of the coordinates xl,

•.., x n, and let A be its closure. A shall contain

119



theorigin. ThedomainA is the exact domain of at-

traction of the equilibrium solution of ( 5. 1) if and only

there exist two functionsv(X) ands(X) havingthe fol-
lowingproperties: (1) v(X) is defined and continuous

in A, and (p(X) is defined and continuous in tke whole

of thephase space; (2) (p(X) is positive-definite for

all X; (3) v(X) is negative-definite, and, for X _ A,

X_0, the relation-i<v(X) < 0holds; (4) ifY _

- A, then lim v(X) = -l; (5) lira v(X) = -1, provid-

x-Y Ix[+ 
ed that this limit exists for X • A; and

<+(+%t
n

i=i axi fi(X) = _o(X)[l+v(X)ld_'+_'('_.

(5.2)

Notice that ¢ (X) is arbitrary. In any instance it

should be chosen so that the partial differential equa-

tion (5. 2) can be solved in the most convenient way.

An example will illustrate the method. Example

1. Consider the system

_! = - x I + 2x12x2 (5.3)

For this system the partial differential equation (5.2)
becomes

av av

a_,(2x,'_-xp- _ _ = _(x,._)(1+v)4,+_'+(2x,,_-x,)'. (5.4)

If we choose

xl 2 + x_ _

(p(X) = (p(xl, x 2) =

_1+x22 +(2xt2x2_xl) 5'

Then (5.4) becomes

' (5.5)

3V (2X12X _ - Xl ) + OV
= (i+v)

(5.6)

which has as a solution

V(Xl, X2) = -i + exp _- 2(l-xlx2) "
(5.7)

From (5.7) it is easily seen that v is negativo-definite

and _ is positive-definite. Also, v is a Liapunov func-

tion for the system ( 5.3).

From the condition v+ 1 = 0 the boundary of stabil-

ity is determined to be xlx 2 = t.

It is not always possible to obtain a closed form

solution of the partial differential equation (5.4) in.

spiteof the freedomin the choice of ¢(X). If a closed

form solution cannot be found, it may be possible to

find an approximation of the domain of attraction of the

equilibrim_ by finding an approximation to the v-func-

tion [ 57].

VI. INGWERSON'S METHOD [24], [251, [261

Ingwerson's method for generating Liapunov func-

tions for nonlinear systems is another example of a

method that is based on the derivation of these func-

tions for linear autonomous systems.

Consider the linear system with constant coeffi-

cients, ai, i = i, 2,..•, n:

(n-i)
x(n) +a Ix +... +an_ l:_+a nx= 0. (6.1)

Make the usual substitutions xl--x , x2--_ , ... , Xn=

x (n-l) and get the system of first-order equations

• |

• |

• |

• !

Xn]
_ d

0 -1

0 0

• • •••

0 0 ...

-a n -an_ l ...

i.+

1

0 x i

0 x 2"

-a I x

, (6.2)

which, in matrix notation, may be written

X = BX . (6.3)

The Liapunov function, the quadratic form,

T (A TV = X AX, =A) (6.4)

for this linear system has the time derivative, with re-

spect to the equations of motion (6.3),

,_ = xT(BTA + AB)X, (6.5)

where A and B are n x n matrices with constant ele-

ments. From a theorem by Liapunov [26,28], the

trivial solution X = 0 of equation ( 6. 3) is asymptoti-

cally stable if and only if there exists a symmetric,

positive-definite matrix A that is the unique solution

of the matrix equation

BTA + AB = - C, (6.6)
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where C is any symmetric, posi_ve-definlte mtr_

• Furthermore, itisknown [26,28] flint A is positive-

definite ff and only if the real parts of the eigvnvalues

of B are negative.

To find a v-function to prove asymptoUc stability,

lngwerson [25,26] reiazvs the restrictionof negative-
definiteness for _ to negative-semidefiniteness. With

this less severe condition imposed, only one of the ei-

genvaluesof C need benonzero. Now t however_a nec-
essary and sufficient condition that the eigenvalues of

A be positive is no longer that the eigenvalues of B

have negative real parts. The following theorem is

required: Let B be any real mairix which, under any

permutationofits rows accompanied by the same per-

mutationof its columns, cannot be partitioned into the

_orIn

B =I 1 -]
B=

where B s is a square matrix. Then the solution A of

equation (6.6) is apositive-definite matrix if and only

if the eigenvalues of B have negative real parts and C

is any positive-semidefinite symmetric matrix, [ 58].

Ingwerson's method for nonlinear systems may
now be described as follows:

Let the nonlinear, autonomous matrix differential

equation

= F(X) (6.7)

be dif/erenLi_ to give

= (6.8)

where B(X) isan n x n mat ri'x with elements a-x.-_-;" , i=i,
3

2 .... ,n; jffil,2 .... ,n_ In equation (6.6) Ingwerson

replaces the constant matrix B by B(X), A by A(X),

and solves for A(X).

In the linear system (6.3), A is a matrix with ele-

ments _ (32 v/3x i axj). If bysome artifice thiscould

be made true for A(X), a Liapunov function could be

found by integration. However, for the second par-
tials of a scalar function v(X) to be the elements of a

matrix, the matrix must be symmetric, which A(X)

would be , and the relation

aAij _Aik

_x k ax. , i=i,2 ..... n;j=l,2 ..... n; (6.9)
J k = 1,2,...,n

must hold for all elements Aij , Aik of A(X). In gen-
eral, the relation (6. 9) does not hold for matrices

satisfying equation (6.6) with B(X) replacing B.

A relatively simple strategem used by Ingwerson

which sometimesyields satisfactory results is as fol-

lows: Generatea matrix A(xi,x j) from A(X) by eclua-

ting to zero all variables x k in each element Aij of A (X)
except those where the index k is the same as the in-

dex of either the row or column of A(X) in which xk

appears. Then evaluate
X

_0 A(xi,xj)clX _ Vv (6. I0)

where it is intended that the integration of each ele-

ment in the jth column of A(xi,x j) be made with re-

spect to xi, j = i,2 .... ,n, as theotber components of
X are herd constant. The result is a vector V v of n

components and has the property

V x Vv = 0. (6. II)

Therefore, Vvis the gradient of some scalar function,

v, and v may be determined from the line integral

X

= r Vv • dXV (6. 12)
0

along any path of integration.

Aprecise definition of (6. t0) and a proof that V v

is indeed a gradient may be found in Reference 26.

A set of A matrices is derived by Ingwerson for

system (6.3) up to the fourth order by setting succes-

sively elements on the principal diagonal of the matrix

C equal to unity and the remaining elements equal to

zero. Equation (6. 6) is then solved for A. Then beth

A and C are multiplied by the factor found in the de-

nominator of A.

For example, let

Then equation (6.6), for this case, becomes

1I :],_,.-,.,
from which, by elementary procedures, it may be de-

termined that, for

[::] [0 i]C = , A t - 234 A =



0

C 1 = 2alC =

2a 1

and for

+E::IA[+a2:1
a I

(6.15)

and C 2

(6. i6)

For a third order equation

a[:aa010 01At = 3 ala3+a_ a3 , Ct = 0 0

a 3 a2 0 2(ala2-a3)

'_01a3 a3 il I! 0 0 1

A 2 = a 3 a_ +a 2 1 , C 2 = 2(ala2-a3) 0

a 1 0 0

r ala22 - a2a3 + a12a3 a12a2 ala2 - a3 7

A3 =--| a2a2 a13+a3 at2 1 'L aia2~a 3 ai2 a I }

(6. t7)

(6.18)

a3(!a2-a3) 0 il
C 3 = 0 (6.19)

0

For corresponding values for fourth-order equations,

see Reference 25.

To illustrate the method consider the simple non-

linear equation

_'+:_+x 3= 0, (6.20)

which, with the substitutions, x 1 = x and x 2 = x, may

be written as the system

_l =x2 (6.2t)

X2 = -X_I - X2

or, in vector form, as

= F(X), (6.22)

where

x= :_2 (x2) (6.23), F(X) = -xl-x2

are column vectors.

Differentiating (2.2 l) gives

= B(x) (6.24)

where the matrix

[o :1B(X) = . (6.25)

3_

In this simple problem

At(X) = Al(xi, xj) = (6.26 )

according to the procedure described above. Now,

= (X13_

v v, \x2 ] (6.27)

X X 1 ?2 " Xl 4 X22

vl = f (Vvi) Tdx= f x_ldxl+ J xzdxz = _- + 2 (6.28)
0 0 0

vl = x_x2 +x2 (-xi 3 -x2) = -xz 2 (6.29)

v i is seen to be positive-definite and Vl is negative-

semidefinite. According to Liapunov's first theorem

on stability, the trivial solution is stable but not as-

ymptotically stable. However, a modification of this

theorem by La Salle [35] and others permits the con-

clusion that (global) asymptotic stability exists even

if viis semidefinite provided vl(X) -- = as IIXII -- +o,

where | X I] is the Euclidean norm and _ _ 0 along any
solution other than X = O. Since this condition is sat-

isfiedby vt(X) in equation (6.28), the trivial solution

of the system (6.2i) is (globally) asymptotically

stable.

AnotherA matrix, say A2, (6. 16) might have been

chosen. For this example,

(3Xl 2 + 1)A2(X) = A2(xi'xj ) = l

and

X

v2 = f (Vv 2) Tdx

0

l
(6.30)

(6.31)

xl(x2=0) x2(xl=xt)
f (xl a+x t+x 2) dx i+ J" (x l+x 2) dx2
0 0

1 1 2
= _- x12 + _x14+ _-x 2 + XlX 2 (6.32)

V2 = - Xl 4
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Let

v=v i+v 2 . {6.33)

Then

v = l[xi'+x_2+(xi+x2) 2] (6.34)

and

= -xl 4 - x_ 2 . (6.35)

Because v is positive-definite and_ is negative-definite

the trivial solution is asymptotically stable.

As an example, consider the system

xl = x2

= x 3 (6.36)

x3 = -(xl + c_) 3- bxs •

Using the same procedure as in the first example, we

get

[: 1i 0

B(X) = 0 I (6.37)

3 (xl+cx 2)2 -3c (xi+cx 2)2 -b

and

r3b(xl+cx _)z 3 (xl+cx2) 2 _I
A2(X) = _3(xlOx2)2 b2+3c(xi+cx_) 2 '. (6.38)

b

Whereupon,

I 3bx_

A2(xisxj)= [3(xl:" )2

b2+ 3c3 _z

b

{6.39)

and

bxis+ (x1+cx_)3/c- xi3/cl

Vv2 =/(x'+ CX2)3 +b2x_ +bx3 I (6.40)

Lbx2+ x3 _J

Then

• X

v2 = f (Vv_) Tdx
0

= _-bxl4+ (Xl+CX_)_/4c- x14/4c + _-b2x2" '(6.41)

1 2
+ bx_x3__, + Txe

is positive definite,

and

_;z = - (bc-l) (3xl 2 + 3cxlx 2 + c22x22) x22 (6.42)

is negative-semidefiniteff b > 0, c > 0 andbc-t > 0as

may be verified by Sylvester's theorem. Further,

v2(X ) -- oo as HX[] -- _o so that (global)asymptotic

stability is assured.

However Ingwerson in Reference 25 points out

that, although the above technique generates a v-

function which provides both necessary and sufficient

conditions for (global} asymptotic stability for this

particular example, itis nota general method that may

be applied to any nonlinear equation with assurance of

similar valid results. For one reason, the selection of

the A (X) matrix requires a certain amount of experi-

ence and ingenuity. For another, if either of the other

two A matrices A l or A 3 above were used, the same

resultwould not be achieved. Frequently, only one of

these matrices gives _meful information for a nonlin-

ear system. This was true of the preceding example.

Often it is necessary to form some linear combina-

tions of v-funcUons generated by use of the various A
matrices. Sometimes an A matrix will have to be de-

termined by selecting some of the off-diagenal ele-
ments of the matrix C to be nonzero.

VIL THE VARIABLE GRADIENT METHOD OF

SCHULTZ AND GIBSON [54]

The variable gradient method of generating v-

functions represents an important step toward reduc-

ing the amount and quality of experience and ingenuity

required of the investigator attempting to discover the

stability properties of nonlinear systems. The method

permits the study of systems with one or more single-

valued nonlinearities in which the nonlinearities are

known as definite functions of the state variables.

The method's most significant characteristic is that

v-functions are generated which apply to the partlcnlar

nonlinear system being investigated. This is in strong

contrast to assuming a tentative v-function and testing

it with one or more Liaptmov theorems as is the case

123



when applying the methods of Lur'e, Letov, Krasov-

skii, Rekasius, and others [54].

As is indicated by its name, the variable gradient

method is based on the existence of the gradient of a

v-function X7 v with undetermined components. Both

v and _ are then determined from this vector. Thus,

_; = (vv) T_ (7 1)

and

V

X

f (Vv) TdX .

0

(7.2)

The integral in (7.2) is a line integral, and the upper

limit X is simply an arbitrary point in Euclidean n-

dimensional phase space• In order that v be uniquely

determined from (7• 2) it is sufficient that

VXVV-- 0• (7.3)

This is equivalent to the statement that the matrix

M

aVv i 8Vv_ aVv
n

8x I 8x 1 8xi

8Wv i 8Vv 2 OVv
• • n

8x_ 8x2 8x2

8Vv i 8Vv
. • . + • . . n

8x 8x
n n

(7.4)

be a symmetric matrix• Thus, the problem of deter-

mininga v-functionwliich satisfies Liapunov's stability
criteria is transformed into the problem of finding a

V v such that (7.3) is satisfied•

The vector form of the equations of motion of the

dynamical systems whose stability properties are to

be investigated is assumed to be of the form

= B(X)X; X(0) = 0, (7.5)

where X and X are column n-vectors, and

B(X) =

"o

0

0

bl(X)
m

I ........ 0

0 I ...... 0

0 ........ i

b2(X) ...... bn(X)

(7.6)

The b i (X) are as sumed to be continuous over a suitable
region of phase space.

The first step in the variable gradient method is

to assume V v to be a column n-vector of the form

VV _

"allx I + al2x 2 + ... + ainX n-

a_tx t + a_2x2 + ... + a2nx n

o- • • • • • • • • • •

+,_an:l+X,l+ ..... 2Xn

(7.7)

where the aii are restricted to be functions of x i alone

with the exception Of ann which is set equal to a con-

stant• Furthermore, the aij are chosen to be positive
so that v will have a better chance of being positive-

definite. The choice of ann to be the constant 2 was

made to insure that v, calculated from equation (7.2),

will include a term in Xn2. Schultz and Gibson let the

remaining terms aij be completely undetermined but

consisting of a constant part aij,c and a variable part

aij,v. Thus, aij is of the mrm

a.. + Xn_ I) (7.8)t] = aij,c aij,v(Xi' ....

The above restrictions on the a..are made because the

v-functions determined by the method can, at least for

the examples treatedin Reference 54, be easily tested

for positive-definiteness despite the fact that they are

sometimes not quadratic forms. The v-functions gen-

erated for the examples are always of the form

v(x) = x 2+ 2fi(xl, .... Xn i)Xn ÷ _(xl ..... Xn_i ) ,
n

which may be written (7.9)

v(x) = (x+ fi)2 + ot - _ . (7.10)
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Thus v(x) is positive-definite ff rv- _ is positive-

- definite.

Substituting from (7.8) into (7.7) gives the gen-

eral form

Vv=

au.c+au.v }x1+ (an.c'_m.v)_ + ... + (am.©+am.v)xaa2t. ©+an.v) _+ (,m.c+_. v)r_ + ... + (am.o-t_,.v)X

a_.c+am.v)x + (am.c+am.v)r4 + ... +

• (7.11)

Step 3.

ways. For example, set

all- azl-2xl z = 0

azx >0

0--< a/2-- 2 .

Constrain _ to be at least negative-semidefi-

nite. This may be done in any one of several

(7.15)

(7.16)

(7.177

Arbitrarily choose a_ = 1, solve for all in equation
(7.15) and substitute in (7. 13). Then

where aft, v are functions of _ alone a-. are chosen-_ " 1]
to be positve, and ann = 2. The entire procedure of
the variable gradient method may now be summarized
as follows:

Step i.

Step 2.

Step 3.

Step 4.

Write V v in the form of equation ( 7, 11).

Determine _ from the equation _ = (Vv) T_.

Constrain _ to be at least semidefinite.

1
Use the y (n) (n-i) equations implied bythe
condition V x Vv = 0 to determine the remain-

ing unknown coefficients in W in equation

(7. li).

Step 5. Because the addiiion of terms as a result of

performing step 4 may have altered _, it is

necessary to determine whether _ is still at

least semidefinite.

Step 6.

V=

C_eulate v according to the equation

f(v v7 TdX, and test for positive-

0

definiteness.

We

Section

are

will use the equations in the first example of

6 to illustrate the method. These equations

Xl =xz

= -xl s-x 2 . (7.12)

Step 1. Write Vv in the form of equation (7. 77.

Vv =_ aux'+ a_x'zl

La''x'÷ 2X2 J (7.13)

Step 2. Determine _ from equation (7.1).

= (Vv) T_ = (all_a21_2xlZ)xlr_ + (a12-2) x22 _a21xl4.

(7. 147

Vv

=[{a21 + 2x12)Xl + Y'_I
L a21x1 + 2_

(7. i8)

Step 4. Use the condition V x V v = 0 to get the equa-
tion

9Vv I 9Vv 2

- (7.19)
9_ 9x 1 '

which, for this example, gives the equation

_1 0a21,V

a_l+ _-I xl =a_l'c+azl'v+ axl xl=i . (7.20)

Equation (7.20) is satisfied if

a21,c = I (7.217

and

a21,v = 0 . (7.227

Then equation (7.18) can be written

= F2x13 + _ + _1
Vv Lxi + 2_

and, by line integration,

xt (x_=0) _(xr---xl)
V = f (2Xl"_+Xl) dXl + J (xl+2x27d _

0 0

\
Xl4 Xl 2

+__ +XlX2+_z2 2

= _(Xl 4+ x_ 2+ (Xl+X2)2) • (7.23)

Step 5, Determine v, with respect to equation (7. 12),

by differentiation of equation (7.23).

= _Xl4 __2 (7.24)
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Clearly v is positive-definite and _ is negative-definite.

Therefore, asymptotic stability is assured. Further,
because

v (x)- as Uxll--

and _ is not identically zero along any solution other

than X = 0, the trivial solution is globally asymptot-

ically stable according to the modified Liapunov the-

orem by La Salle [35, 54].

Instead of choosing al2 = i, any constant value of

a12 which would have satisfied the relation 0 -< ai2 <- 2

could have been chosen. For al2 -- 0, v = x14/2 + x_ 2,

l 4
and_,=-2x22. Foral2 =2, v=_'x I +xl 2+ 2xlx 2+x22

and _} = - 2xi 4.

As a second example of the application of the vari-

able gradient method consider the system

)}l = x2 - xl (xl 2 + x227

:_ = -xl-x2(xl 2+x2 2) . (7.25)

Then

anx i + al2x _ ]
_7v 'L a21xl + 2x2

and

(7.26)

= x:+[-a,,-a,,(x,'+x:)]+ x22[ai2-2(xi2+x2z)]

+ xlx 2 [all -2-(a12+a21)(xi2+x_2)] (7.27)

As in the first example, set the coefficient of xix 2

equal to zero and constrain the coefficients of xl 2 and

x2 2 to be negative. Thus

all - 2 - (a12 + a21 ) (xl 2 + x22) = 0 (7.28)

- a21 - ali(xl2 + X227 < 0 (7.29)
4-

a12 - 2(Xl2 +. X22) < 0 . (7.30)

Let a12 = 0. Then

all = 2 + a21(xi 2 + x2 2) (7.3i)

and

I q2x I + a21xl(xl2 + x2 2

VV [, a21x t + 2X 2 'i

The r_quirement that

(7.32)

0 _Tvi a _Tv2

Ox2 _xl

gives the relation

Oa21
2a21xl_ = a21 + x I -- (7.33)

0x l

which is satisfied for a21 = 0. Thus, with a12 = a21 = 0

Vv = k2x2 (7.34)

and

X

v = J" (V V)TdX

0

= Xl 2 + X22 (7.35)

= -2(xl 2+ x22)2 .

Since, also,

v(X7_ _ as IXl: _o .

the trivial solution is globally asymptotically stable.

As a third example, consider the system

xl = x2

_2 = xs (7.36)

_3 = - 3x3 - 2_ - 3x12x2 - kxl a .

Accordingly,

fallx/+ ai2x2 + aiaxa]

VV =_a2ix i + a22x 2 + a23xa/ o (7.377

La31xl + aa2x 2 + 2x 3 J

If, now, the usual procedure is followed, it would be

seen that _¢, which must be constrained to be at least

negative-semidefinfte, could be so constrained in a

very large number of ways. Further study would also

show that matters could be considerably simplified if,

at the beginning, a32 were chosen to be zero. In that

case

+,

v. = (a23 - 6)X32 + ai2x22 - kaalxl 4

+ (all - 2aal - 3a31x127 xlx 2

+ ( aia " 4 + a22 - 6xl 2) _x 3

+ (a21 - 3aal -2kxl 2)xlx a (7.387

Because the method recommends that the a.. should not
1j

be negative, a12 should be chosen to be zero so that the

bothersome term ai2x22 vanishes. Infact, considerable
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simplification re sults ff _ is constrained to be negative-

. semidefinite in x I and x 3 alone. Thus, let all terms

containing _ vanish. Therefore,

all- 2a31- 3a31xi 2 = 0 (7.39)

a13 - 4 +a22 - 6xl2 = 0 . (7.40)

Let a13 have a constant part ais,c and a variable part

als,v , and let al3,v = 6xl 2. Then equation (7.40) be-
comes

a2z = 4 - al3,c . (7.41)

Equation (7. 39) shows that a3i,must be a function

of x 1 alone inasmuchas the method requires that aii be

a function of x i alone. Also, from the first term in

equation (7.38), and recalling that the aij should not
be negative, a23 must have only those values that sat-

isfy the relation

0 <--a23 --<6. (7.42)

With al2 =.0, a22 =-4-a13, c and all = a31(2+3xi 2) ,

_aalx,(2 + 3x12) + (6x,_ + als, c) x3_

Vv =la_Ixl+ (4-a13,c):_+a23xs _ . (7.43)
La31x1 +" 2x 3

The requirement that

0Vv I OX7v2

Ox 2 Ox i

yields the equation

Oa21 Oa_s

= o, (7.44)

which has a solution

a2l = a23 =0 •

so that V v now becomes

l/a3ix' (2 + 3x12) + (6x12 + al3' c) x']
Vv = 1(4- al3_)x2

La31xl + 2x 3

(7.45)

The additional requirement that

OVv i OVv 3

Ox s +xl

yields the equation

6xl 2 + al3,c = a31,c + a31,v + X 1

08-31' V

Ox I

(7.46)

Let al3,c = a31,c = 0. Then equation (7.46) becomes

Oa$l'v (7.47)

6x_ = a31,v+X I 8x I ,

which has the solution

a31, v = 2x12 . "(7.48)

Whereupon

/ 6x15 + 4x13 + 6xlZx3 7

vv = 2xl 3 + 2x s

(7.49)

and

V =

X

J (V v) TdX
0

x I (x_--x3=O) x2 (xr-x3=O)

-- J (6x, + 4x? + 6x?x )dx,+ f 4x dx 
0 0

%(XI=%,'_=X2)

+ f (2xi 3+2x 3) dx3
0

= Xl 6 + Xl 4 + 2x2 2 + 2x13x_ + :(32

= xl 4 + 2x_ 2 + (xl 3 + x3) 2 (7.50)

_r = -2(kxl e+3x_+xl3x3(k+3)) . (7.51)

Sylvester's theorem applied to the right member of

equation (7.51) shows that _; is ne_ative-semidefinite

for k=3 and v is obviously positive-definite. Because,

v(X) -- _ as [Xl-_oo thetrivial solution is glO-alSO,

bally asymptotically stable.

Schultz and Gibson [ 54] pointout that a better re-

sult may be obtainedif initially a2s is not allowed to be

zero. Analternative v and _ are found to be, respec-

tively,

V

2
xl6 + _ (2a23+ka23+4) x4 + _'a23xl2

2 _ (a2s+2) x 22+ a23x13_ + 2x13x3 + 2a23xlx_ + _'a23 +

+ a2sx2x 3 + ):3z (7.52)

and

2

= -2kxl 6 -( 2k+6-a23 ) x13x3 - x32 (6-823) -_a23 kx/ .

(7.53)

If a_3 = -2(k-3) then v is negative-semidefinlte and v

is positive-definite for all k satisfying the relation

O<k-3. (7.54)
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Thus, the trivial solution is globally asymptoti-

cally stable not forjust k=-3 but for the set of all k sat-

isfying equation (7.54).

VIIL THE METHOD OF KU AND PURI [ 5i] , [ 52]

The method of Ku and Puri represents another

attempt to reduce the kind and magnitude of experience

and ingenuity required of the investigator in his at-

tempts to generate Liapunov functions. It might be
said that the innovators of the method have tried to as-

sume, by the generation of the form of the elements of

an S matrix, the larger part of the burden of ingenuity

and experience normally required of the individual in-

vestigator. Whether they have succeeded is problem-
atical. The v-function is assumed always to be the

quadratic form

v = xTsx (8. i)

where S is an n × n symmetric matrix. An S matrix

for a fourth order system may have the form

S =

(3cliXl 2 + ZII) (2cnxl + fn) (2c1,1xl + f13) (2c14xl + ft4)

x_ 2x I 2x ! 2x I

(_xl + f.) (3c22xtz + Z_z)
C2S el4

• 2_ X2z

(Zctzxl+ f*_) cz_ (3cwx_ + Z_ cu
2xi Xaz

(2ct4x I + f_) c u c u (3c44x4z + Zul

2X 1 X4z

{8.2.)

where

X.

: j
Zjj 0

j = 1, 2, 3, 4, (8.3)

and fro, f13, and f14 are taken as functions of x 1 only,

and the cij are constants. It is assumed that the sys-
tem of nonlinear differential equations has the form

-- A(X)X,

where A(X) is the n × n matrix

A(X) =

(8.4)

0 1 • ,

0 0 1• .0

0

• • o • • • , o • • •

0 0 . . . 1

-allX) -a2(X) . . -a IX)
n _

(8.5)

Differentiating equation (4.1) gives

= xT(ATs+sA+ S) X . (8.6)

th th
If fl,iidenotes an element in the i row and j col-

umn of file S matrix, then v may be written, for a

fourth order system, in the form

= _xlxi_+/_mxlx2+/3mxlxs+&4xlx4

+ _mx2x1+f12_x22+/_2sx2xs+Buxzx4

+/3mx3xi+_23xsx_+_mx_+/3_x3x4

+/3ux4x1+/_24x4x2+_34x4x3+/h4x42.

(8.7)

By definition,

• ; ) T_v = (Vv

Ku and PCtri set

(8. s)

W = BX

where B is the nonsymmetric square matrix

(8.9)

B=

(6cllxi+zl(xl)) 2c=+fI, (x I) 2ci_'f _ (_) 2cl_+fi_ (x I)

x_

(2czax, + f,, (x,)) Zc,, ( 6cSaxa+z'(x_) ) Zca_

x_ x_

2c u 2c_
x 1 X_

(8. Io)

Since, from (8.9)

(Vv) T = xTB T , (8. il)

equation (8.8) becomes

"_ = xTBTx = xTBTAx • (8.12)

The matrix T is then definte by the equation

T = BTA . (8.13)

Then

•_ = xTTx . (8.14)

Clearly, also,

T = ATs+sA+ S (8.15)

but the determinationof T according to equation (8.13)

i s le s s laborious than by use of equation ( 8, 15). After
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the T matriX has been determined, its terms are ad-

"justed to insure that v will be at least negative-

semideflnite. This is done by making the sum ri_+

vii = 0 and vii negative or zero where the vii are me
elements of the T matrix.

The example in Section 7 will be used to illustrate

the method. In that example the nonlinear system used

was the following:

_=x_

_=x3

_3 = -k_ - (3xl _ + 2) _ - 32 • (8. i6)

The A matriX is

[: 1t 0

A = 0 ,

kxl 2 -13xi 2 +2) 3

and the B matrix is

(8.17)

° 1S = 2 0 , (8.21)

L xl 2 0 1

and

v = xTsx = xle+xi4+2x_2+2xlSxS+_ 2 , (8.22)

which is positive-definite.

According to the theorem by La Salle referred to

above, the trivial solution is asymptotically stable in

the large for k = 3. It is evident from an exs_ination

of the resultsobtained for the same example in the pre-

ceding section that the result obtained by Ku and Puri

is too restrictive. However, it is not to be concluded

that the method is inherently less powerful than the

method of Schultz and Gibson. Further study may re-.

veal modifications which will give the same or even

better results.

B =

2cD

(2c.x_f. (xl)) 2,, (6cnx_zs (xs)'

(8.18)

The B matrix could now be simplified according to the

methodbysettingcll=cz2=cl3 = c_ = z z z 3 = f_(x I) = 0

to get a simplified B matrix. The T matrix may be

_computed according to equation (8.13) to give

k- x? -,

where in the interests of simplicity an arbitrary value

of i was assigned to c33 which appears as a factor in a

term of T_.

Therefore, by equation ( g. 14)

= _2(kxl6 + (3+k) xl3xs + 3x3_-)). (8.20)

Using the same substitutions as were used to simplify

the B matrix and the values determined for zl(x l) ,

fl3(xl) and k22 in computing T the simplified S matrix
becomes

to

2e

3o

4e

5o

6e

7o

BIBLIOGRAPHY

Aizerman, M. A. Sufficient Conditions for the

Stability of a Class of Dy_mic Systems with
Variable Parameters. PMM, 15, pp. 382-384,

i951.

Aizerman, M. A. On the Determination of the

Safe and Unsafe Parts on the Boundary of Stabil-

ity. PMM 14, pp. 444-448, 1950.

Antosiewicz, H. A. A Survey of Liapunov_s Sec-

ond Method. Chapter 8 of the book "Contribu-

tions to the Theory of Nonlinear Oscillations."

Vol. IV, Princeton University Press. i958.

Auslander, J. and Sievert, P. Prolongations and

Stability in Dynamical Systems. RIAS Tech Rept.

63-18. SepL 1963. 39pages.

Barbashin, E. A. The Construction of Liapunov

Functions for Nonlinear Systems. Proceedings

First IFAC Congress. 1960. pp. 1637-1640.

Barbashin, E. A. and Krasovskii, N. N. The

Existence of Liapunov Functions in the Case of

Asymptotic Stability in the Large. PMM; 18, 3.

1954. pp. 345-350.

Bass, R. W. Zubov's Stability Criterion. RIAS

Monograph M59-ti. 1959.

129"



8.

91

i0.

II.

12.

13.

i4.

15.

16.

17o

18.

i9.

20.

Bergen, A. R. Verification of Aizerman's Con-

jecture for a Class of Third Order Systems.

California University ERL 60-409 Oct. 12, 1961.

16 pages.

Cesari, L. Asymptotic Behavior and Stability

Problems in Ordinary Differential Equations.

Academic Press, Inc., Publishers. New York.

1963.

Chetayev, N.G. The Stability of Motion. Trans-

lated from the Russian byM. Nadlero Pergamon

Press. New York. 1961.

Chzhan, Sui-Ni. Stability of Motion During a

Finite Time Interval. PMM. 23. 1959. pp. 230-

238.

Coddingt0n, E. A. and Levinson, N. Theory of

Ordinary Differential Equations. McGraw-Hill

Book Co., Inc. New York. 1955o

Ergen, W. K., Lipkin, H. J., Nohel, J. A. Ap-

plications of Liapunov's Second Method in Re-

actor Dynamics° J. of Math. and Physics. 36,

I. 1957. pp. 36-48.

Erugin, N. P. Liapunov's Second Method and

Questions of Stability in the Large. PMAM. 17.

1953. pp° 389-400.

Gantmacher, F. R. Matrix Theory. Vols. I, II.

Chelsea Publishing Co. New York. 1959.

Geissler, E. D. Problems in Attitude Stabiliza-

tion of Large Guided Missiles. Aerospace En-

gineering. 19, I0. Oct. 1960. pp. 24-29, 68-72.

Gibson, J. E. et al. Stability of Nonlinear Con-

trol Systems by tl_e Second Method of Liapunov.

Air Force Missile Development Center. TR-61-

6. July 1961. 137 pages.

Grays.n, L. P. The Design of Nonlinear and

Adaptive Systems via Liapunov's Second Method

Polytechnic Institute of Brooklyn. MRI-937-61.

71 pages.

Hahn, W. Theorie und Anwendung der Direkten

Methode yon Liapunov. Springer Verlag. Ber-

lin. 1959.

Hahn, W. Theory and Application of Liapunov's

Direct Method. Translated from the German by

H. H. Hosenthienand S. H. Lehnigk. Prentice-

Hall, Inc. Englewood Cliffs, N. J. 1963.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Hahn, W. The Present State of Liapunov's Sec-

ond Method. In the Book"Nonlinear Problems,"

R. E. Langer, editor. University of Wisconsin

Press. Madison, Wisconsin. 1961.

Hoelker, R. F° Theory.f Artificial Stabilization

of Missiles and Space Vehicles with Exposition

of Four Control Principles. National Aeronau-

tics and Space Administration TN D-555. June

1961. 22 pages.

Hoelker, R. F. and Miner, W. E. Introduction

into the Concept of the Adaptive Guidance Mode.

Aeroballistics Internal Note No. 2 I-60. Geo. C.

Marshall Space Flight Center, Huntsville, Ala-

bama. Dee. 28, 1960. 14 pages.

Ingwerson, D. R. Principal Definitions of Sta-

bility. In the book "Proceedings of Workshop

Session in Liapunov's Second Method," L. F.

Kazda, editor. The University of Michigan, In-

dustry Program of the College of Engineering,

Ann Arbor, Michigan. 1962o pp. 53-79.

Ingwerson, D. R. A Modified Liapunov Method

for Nonlinear Stability Analysis. IRE Transac-

tions on Automatic Control. May 1961. pp. 199-

210.

Ingwerson, D. R. A Modified Liaptmov Method

for Nonlinear Stability Problems. Ph. D. dis-

sertation, Stanford University. Stanford, Cali-

fornia. Nov. 1960.

Kalman, R. E. Liapunov Functions for the Prob-

lem of Lur'e in Automatic Control. Proceedings

of the National Academy of Sciences. 49, 1963.

pp. 201-205.

Kalman, R. E., and Bertram, J. E. Control

System Analysis and Design via the "Second

Method" of Liapunov. I, Continuous-Time Sys-

tems. II, Discrete Time Systems. Transactions

of the ASME, Journalof Basic Engineering. 82,

June 1960. pp. 371-400.

Krasovskii, N. N. On the Stability in the Large

of a System of Nonlinear Differential Equations.

PMM. 18, i954. pp. 735-737.

Krasovskii, N. N. On Stability under Large Per-

turbations. PMM. 21, 1957. pp. 309-319.

Krasovskli, N. N. Stability of Motion. Trans-

lated by J. L. Brenner. Stanford University

Press, Stanford, California. t963.

130



32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

La Salle s J. P. The Extentof Asymptotic Stabil-

ity. Proceedings of the National Academy of

Sciences. 46, 3, Mar. 1960. pp. 363-365.

La Salle, J. P. Some Extensions of Liapunov's

Second Method. IRE Transactions, Vol. CT-7.

Dec. 1960. pp. 520-535.

La SaUe, J. P. Complete Stabilityofa Nonlinear

Control System. Proceedings of the National

Academy of Sciences. 48, 1962. pp. 600-603.

La Salle, J. P. and Lefsohetz, S. Stability by

Liapunov's Direct Method with Applications..

Academic Press, Inc. New York. 1961.

Lefschetz, S. Differential Equations, Geometric

Theory. Interscience. New York. 1957.

Lefschetz, S. Liapunov and Stability in Dynami-

cal Systems. Bol. S.c. mat. Mexicana. 2, 3,

1958. pp. 25-39.

Lefschetz, S. Controls: An Application of the

Direct Method of Liapunov. RIAS TR 59-8. Dec.

1959.

Lehnigk, S. H. On Liapunov's Second Methdd

with Parameter-Dependent Quadratic Forms in

the Case of Autonomous Non-linear Equations

Which Have a Linear Part. Proceedings of the

First International Congress of the International

Federation of Automatic Control. Moscow, 1960,

pp. 97t-974.

Let.v, A. M. Stability in Nonlinear Control Sys-

tems. Princeton University Press. 1961.

Liapunov, A. M. Probleme General de la Stabi-
lite due Mouvement. Annals of Mathematical

Studies, No. 17. Princeton University Press.
1947.

Lur'e, A. L Some Nonlinear Problems in the

Theory of Automatic Control. (A translation

from the Russian.) Her Majesty's Stationery
Office. London. t957.

Lur'e, A. I. and Rozenvasser, E. N. On Meth-

ods of Constructing Liapunov Functions in the

Theoryof Nonlinear Control Systems. Proceed-

ings of the First International Congress of the

International Federation of Automatic Control.

Moscow. 1960. pp. 1356-1359.

Malkin, I. G. Theory of Stability of Motion. AEC
Translation 3352. Office of Technical Services

Department of Commerce, Washington 25, D.C.

45. Massera, J. L. On Liapunov's Condition of Sta-
bility. Ann. of Math_ 50, 3. 1949. pp. 705-721.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Massera, J. L. Contributions to Stability Theory.

Ann. of Math. 64, 2. 1956. pp. 182-206. Cor-

._,8. page 202.rection. Ann. of Math. 68, 2. _"=

Miner, W. E. and Schmieder, D. H. The Path-

Adaptive Mode for Guiding Space Flight Vehicles.

Paper 1944-61 Guidance, Control, and Naviga-

tion Conference of the ARS. Stanford University,

Stanford, California. 1961.

Persidekii, S. K. On the Second Method of Lia-

punov. RMM. 25, 1961. pp. 20-28.

Pontryagin, L. S. Ordinary Differential Equa-

tions. Translated from the Russian by L. Kac-

inskas and W. B. Counts, Library of Congress.

Addison-Wesley Publishing Co., Inc. Reading,

Massachusetts. 1962.

Pozarickii, G. K. On the Construction of Lia-

punov Functions from the Integrals of the Equa-

of the Perturbed Motion. PMM. 22, 1958. pp.

145-154.

Purl, N. N. and Weygandt, C. N. Second Meth-

od of Liapunov and Routh's Canonical Form.

Journal of the Franklin Institute. 276, 1963.

pp. 365-384.

Puri, N. N. and Ku, Y. H. On Ltapunov Func-

tions of High Order Nonlinear Systems. Journal
_ _._ _-_n.,.1;_ in_.+_ 9_ ta_ "-'- 349-

364.

Roitenberg, J. N. Ona Method forthe Construc-

tion of Liapunov Functions for Linear Systems

with Variable Coefficients. PMM. 22, 1958. pp.

167-172.

Schultz, D. G. and Gibson, J. E. The Variable

Gradient Method for Generating Liaptmov Func-
tions. Transactions of AIEE on Automatic Con-

trol. 81, Part H, 1962. pp. 203-210.

Yoshizawa, T. Stability and Boundedness of Sys-

tems. Arch. rat, Mech. and Anal. 6, 1960. pp.
409-421.

Zubov, V. L Methods of A. M. Liapunov and

Their Application. AECtranslation4439. Office

of Technical Services, Department of Commerce

Washington 25, D. C.

Zubov, V. I. Questions in the Theory of Lia-

punov's Second Method; The Construction of the

131



58.

GeneralSolutionin theDomainof A$ympt_,ic

Stability. (English translation. ) Military Pro-

ducts Group Re search Department, Minneapolis-

Honeywell Regulator Co. Minneapolis 40, Minne-

sota.

Vogt, W. G., Li, C. C. and Ingwerson, D.R.

Discussion of "A Modified Liapunov Method for

59.

Nonlinear Stability Analysis." IRE Transactions

on Automatic Control. Jan. 1962. pp. 85-88."

Rodden, J. J. Numerical Applications of Lia-

punov Stability Theory. In Preprints of Confer-

ence Papers 1964 Joint Automatic Control Con-

ference at Stanford University, Stanford, Cali-

fornia. June 24-26, 1964.

132



q

AN ORTHONORMALIZATION PROCEDURE

FOR MULTIVARIABLE FUNCTION APPROXIMATION

SUMMARY

by

Hugo Ingram

When a function of several variables is given nu-

merically in tabular form, the orthonormalization

technique allows an approximation of the numerical

data to be determined in a convenient functional form.

A method is described that requires much less com-

putational work than the usual least squares technique,

and allows the accuracy of the results to be more

easily controlled.

_Yl .

lY2

i

I

,o

lYn

Xll

X

nl

X12

X_

.

xn2

SECTION L INTRODUCTION

x1 m

%m

In many types of scientific and engineering prob-

lems, a table of two or more columns of data occurs,

and it is often desirable to put this data in a more

useful form. The methods for performing this task

are the many different techniques of multivariable

function approximation. The method described in tiffs

report is an orthonormalization technique. The ap-

proximating functions resulting from this procedure

are theoretically equivalent to those obtained by least

squares procedures as shown in Reference 2. How-

ever, the speed and accuracy withwhich the coefficients

n_n t_ _nmrM,t,_d are much improved. AI_ o ,_.

clear and useful physical interpretation of the pro-

cedure is available to aid in the choice of terms to be

included in the approximating formulas.

This report will briefly discuss this procedure by
first describing the type of function approximation

problem that is of interest, next, outlining the ortho-

normalization method of solution, and finally, making

some consideration of applications.

SECTION H. GENERAL DISCUSSION

A. STATEMENT OF THE PROBLEM

A set of n data points for m independent vari-

ables and one dependent variable y is defined in the

following manner (Yi, xil, xi2 ..... Xim ) , where i = 1,
2 ..... n. A schematic representation of this data in

tabular form is shown below.

If such a table of data is obtained, then the table is

assumed to define a function y : f(xl, x 2..... Xm)

over some region including the tabulated data points.

The desired form for the approximation to y is to

be a weighted sum of known functions, i.e., "

Ya = Aofo(Xl' x2 ..... Xm) + A1 fl(Xl' xz ..... Xm)

+... ANfN(x 1, x2 ..... xm),

where the Ao, A 1..... A N are the coefficients or
weighting factors for the N+I known functions. The

magnitude of N and the form for the functions

fo' fl ..... fN are arbitrary except for the restriction

that a finite numerical value must be able to be as-

signed to each of the known functions at all the n data

points. One of the simplest forms for the approxima-
tion is the familiar polynomial form

!Ya a+alxl +a2x2 +''" +amxm+''" +am+ix

+ am+2X2X 1 + a 2 +m+3X2 am+4X3Xt + am+5xyx =

+ am+6X _ + am+7X4X 1 +... + a1 (xm)k.

In the above expression, k is the order of the poly-

nomial and the magnitude of _ depends on k. The

polynomial form is equivalent to the original expres-
sion for Ya, where

133



.4W • '

A -- ao, x2, , = 1o fo (xl .... Xm)

A 1 = al, fl(Xl , x 2.... , x m) = x 1

A --a , fm(Xl, x 2..... Xm) =xm m m

Am+ 1 = am+ 1, fm+l(xl, x 2 ..... Xm) = x_

A N =a l, and fN(xl, x 2..... Xm) = (Xm)

The set of vectors go' gl ..... gN is assumed to be
linearly independent. With this assumption they can"

be transformed into a set of orthonormal vectors

e o, e 1' " " " ' _N by the following Gram-Schmidt process:

15

o , where ]5 =-
Define: eo-IPo] o go'

Pt

el = I_l--_' where P1 = gl - (gl" eo)eo'

2

+2: P2- 'where eo>+°
- (g2" _l)_l '

With the weighted sum type of approximation de-

fined, the problem is now to determine the coefficients

or weighting factors for the known functions fo, fl' • " " '

fN by the orthonormalization technique.

B. METHOD FOR SOLUTION OF THE PROBLEM

After the arbitrary choice of the N known func-

tions to be used in the approximation, a new data table

must be constructed. A schematic diagram of the new

table is shown below where frs means the numerical

value of the function fr computed at the s-th datapoint.

Yl

Y2

Yn

i )l

f
_2

)n

f ......

li

f12 ......

f ..... •

in

fN1

fN2

fNn

Now each of the columns inthe preceding table can be

called a .vector with n components, i.e.,

V1

V2

_n

go _ fo i gl =

f
02

f
on

fn gN = fN1

fl_. fN2

• •

fin fNn

+N P l' where "1_N = gN- (gN" eo)eo

- (gN" el )_1-''" - (gN'_N-1)eN-1.

All the preceding equations are in standard vector

notation, i.e.,

n

• ]5 = Z aibi where a.x and b._ are the i-th components
i=l

of g and t_

A geometric interpretation of this orthonormalization

process is shown in Figure 1.

N

go

e o

%

1t
e'-_ Pt

FIGURE 1. A GEOMETRIC INTERPRETATION OF

ORTHONORMALIZATION PROCEDURE
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After the numerical values of the components of

• the orthonormalvectors e o, el,... ,eN are computed,
an approximation to _ could be written as

Ya = (_" eo)eo ÷ (_" el)el + "'" ÷ @" eN)eN "

Obviously, the approximation is the vector sum of the

projections of _ on _o,el ..... eN" A geometric inter-

pretationis shown in Figure 2. Therey=Yaifn=N+l,

e 1

/
/

/
/

/®+

FIGURE 2. A GEOMETRIC INTERPRETATION OF

THE SELECTION OF EFFICIENT

TERMS

because intbis case all of the projections or compon-

ents of y will be added vectorially to produce _ again.

Finally, some algebraic manipulations are performed

so that Ya can be written in the form

Ya = Aog-o + Aigl +"" + ANgN

as was originally desired. The following equations

will give an idea of how the algebraic manipulations

are to be performed.

_O L Y" PO "- __

(_- e-o)e-- ° = (Y- [_-_) _-_ = (_o.---_o)go -- Aoog o

where

o
A
oo-_ .15

O O

"Pl Pi Y" P1

I I

Y" PI

=  o eo]

Y" P__ y" PI Po o
°

Y'PI Y'PI g1"_o_

= 1

÷ AI_ 1

where

Y" PI gl" Po

A°_=- _PI"_I) _Po"----_o)

and

_.P
1

Au - P1 " P1 "

The above process is continued until the following table
can be constructed.

(:- e-o)e- ° = Aoog °

('y . el)el = Aolgo + Allg 1

<i-+,>:,=Ao,go +AI_I+A#,

(:- eN)e N = AoNgo + AIN, t + AZNg_ +... + ANNg N

Adding each column in the preceding table shows that

Ya = <_" e-o)e--o + (_. gl)e--1 +"" + <y" eN)eN

= AogL + AI_ I +... + ANg N,

where

A =A +A +A
o oo oi o_ + """ + AoN

A I:AII+AI2+... +AIN

A =Az_+...-+A_N

A N = ANN.

All of the Ao, A1, A2 .... , A N can be computed by

using only the following list of dot products:
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(go" go)

(gi"go)' (g_"gl)

(g2"go)' (g2" g#' (g2"g2)

(gN" go )' (gN" gi)' (gN" g2) ..... (gN" gN )

and

(Y" go)' (Y gl)'(Y g,)..... (Y'.gN)"

All of the listed dot products are computed from the

second data table. The recursion relations (deter-

mined as described previously) are then used to com-

pute the Aoo, Aol, All, Ao2, Ai2, • • •, ANN which are

summed to yield the desired results, i.e., (A o, A l,

.... AN).

C. APPLICATIONAL CONSIDERATIONS

In the previous subsection, the procedure was

explained for the weighted sum of all the N (arbitrary)

functions. Often it is desirable to construct in an ef-

ficientmanner a sufficiently good approximation which

uses as _ew as possible of the arbitrary functions. This

is accomplished by letting each of the functions be

used as _,o and computing the corresponding (y • eo).

The particular function which makes (Y" eo) the

largest is used as the actual go' and then the remain-
ing functions are each used as gl to compute (y • el)"

The function which makes (y • el) the largest is used

as the actual gl" The process is continued until as
many of the arbitrary functions are used as desired.

As shown in Figure 2, y has three components. The

components are given by the expressions (-_ • eo)go,

(y • _i)61, and (y • _z)_2. If only two of the compon-

ents of _ could be used to write an approximation to _,

then it would seem reasonable to use the two biggest

components, i.e., (y. _o)_o and (y. _I)_i. This is

the basis for using this particular selection procedure.

The process is very rapid because the recursive

property of the orthonormalization method allows all

work done in one step to be used on the next step.

If at any point during the computational procedure

the absolute value of one of the P's becomes zero or

approximately zero, the _ used to eomp_te that par-

ticular P is linearly or nearly linearly dependent on

the previous _'s. This indicates that, to achieve good

accuracy in the approximation, the _ which causes a

particular "P to be zero or near zero must not be used

at that point in the process, although it may be saved

for later use.

The final consideration to be made in this report

concerns a method for weighting the constructed data -

table so that the partials of the approximation to y will

also approximate _ --_ _ This is done
0X I' 0X 2' "''' 0Xm"

simplf by including values for the _ _ _Y
8X l' OX 2' .... DXm

in the y column of the data table, including values of

af _f Of
O O O .

m the go column, etc. The pro-
_i' 8X2' "''' 8Xm

cedure is reasonable because Yia = Aofoi + AI fli + •••

+ ANfNi, where i is the number of the data point; and

therefore,

3Yia _f _fli
-A oi + Ai

_:. oax, a-_-. +''"
J J J

•0fN i

+AN 3x.
J

(j= i..... m).

Naturally, the additions to the data table must be

available. They will usually decrease the accuracy of

the approximation to _, but the approximation will

more nearly satisfy the partial derivatives of the func-

tion that is assumed to have produced y.

SECTION HI. CONCLUSIONS

The preceding sections give a brief outline of the

orthonormalization procedure with a few computational

considerations. More detail onthe mathematical basis

for the procedure can be found in the references. An

IBM 7094 computer program incorporating most of the

features described has been successfully used to de-

velop polynomial type approximations using 45 of the

220 functions that are generated by 9 variables (m=9}

eachto the 3rd order (k=3). The appendix is a listing

of the computational procedure used to construct the

computer program.

1.

2.

REFERENCES

Dupree, Daniel E., "Existence of Multivariable

Least Squares Approximating Polynomials," Pro-

gress Report No. 2 on Studies in the Fields of

Space Flight and Guidance Theory.

Dupree, et. al, "A Recursion Process for the

Generation of Orthogonal Polynomials in Several

Variables," Progress Report No. 3 on Studies in

the Fields of Space Flight and Guidance Theory.

i36



APPE_

COMPUTATIONAL PROCEDURE

(1) Preload is the table of dot products

_o_o,

_o- _1,gl"gl

go gffi,g, gi, g,_,

_N'_o, gN" gl, gN" g2 ..... gN" g N

Y" go' y " gl' y " g2' "''' y " gN' y " y

(2) Start Computation Procedure

o o

1
- Y" goH° ',/IS .-IS

o o

1
A H

oo _/-p . p o
o o

g," go
(3) B10-15 .

o o

151" 151: gi " gi - 2B10 gl " go + (Bl0) 2 7o. 7o

1
H1 = -- [Y" gl- Y" _o ]

._ Bl0

-- -1

AI0 - n/"_l " "P1 (BIO Hi)

I

All - _ Hi
n/ PI " P1

(4) Start loop now with (i = 2, 3 ..... N) where N+t
is the number of functions to be Used in the ap-

proximation.

m=t

<b)_i _m=_i_m- j_0_J _i_j <m=_'_..... i-_

g_'_k i-1 il-_ _
(c) B..=_- T _----_B'" .'_k --_+" _ _

+," ___
_d_ Bi<i_l> : P_-_" _i-1

(k--O, 1, 2 ..... 1-2)

i-1

r=O

j=l

Y" gi I i-I

(f) H i - - Z
- : n,/ P. - P. ,,,]'_. • i 5. r=O

I I I I

(g) Air= _j._..'_. (BirH i)
I I

i

(h) A..- H i
n qls...p.

1 1

N

=A +A10+ Z Aio(i) A ° oo
i=2

N

A1 = All + Z Ail
i=2

N

A i = Z Aqi
q_

(i=2, 3 ..... N)

N

(J) _]" d=Y" Y- HoH1- Z H.1
i=2

(r=0, 1,2 ..... i-l)

._
(k) R.M.S. = n

(5)

where n is the number

of points and must be

preloaded.

To select only L of the N+I functions for the ap-

proximation, the following procedure is used.

(a) Use each of the _s as go and use the _ that

produces the largest Ho as the actual go-
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(b) With the go determined by (a), use each of

the remaining _'s as _1 and use the gl that

produces the largest H 1 as the actuai _f

(c) Withthe go and gl determined by (a) and (b),

use each of the remaining _'s as g2 and use

the g2 that produces the largest H 2 as the

actual gz"

(d)

(e)

If at any point in parts (b) or (c) one of the
_'s produces a P less than a prespecified

tolerance, that particular _ is not used in the

procedure, although it may be saved for use

as a g later in the process.

Continue this process until L terms are con-

tained in the approximation to _'.
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ANALYSIS OF THE INFLUENCE OF VENTING AND GAS LEAKAGE

ON TRACKING OF ORBITAL VEHICLES

By

A. R. McNair and P. E. Dreher

SUMMARY

The results of a study of the effects on earth

orbits of leakage and venting of propellant gases are

discussed. Two types of propulsive thrusts, contin-

uous and intermittent, which might result from such

venting and leakage, are treated considering the orbit

and tracking effects. Integrated and analytic formu-

lations have been made. The following conclusions

result from the analysis for a continuous thrust. The

only significant effect of out-of-plane thrust is in the

out-of-plane direction. The only significanteffects of

in-plane thrusts are in-plane. The downrange effect

of an in-plane thrust is larger then the radial effect

after about half an orbit. Downrange thrust gives the

largest effects of any thrust in both the radial and

downrange direction. The analytic formulation com-

pares well with the integrated effects as long as the

orbit is near circular. The altitude of the orbit af-

fects the position change due to the thrust. An inter-

mittent thrust causes more pronounced short period

effects than a continuous thrust, with the short period

being sensitive to the frequency of the" thrust. The

orbits which result from the initial condition's deter-

mined with tracking data are influenced by the thrusts.

Considering the case that no attempt is made to solve

for the thrust, a downrange thrust in the downrange

direction give s the largest tracking effects, although

some in-plane effect is observed. The error during

the period when tracking data are available is smaller

than the error after the interval because the orbit de-

termination model has no information about errors

where there are no observations. As more passes

are used, the error becomes larger during the track-

ing interval, since the actual thrusting orbit is ap-

proximated by a nonthrusting orbit. This, of course,

assumes that no attempt is made to solve _or the

thrust.

NAS8-11073. A more detailed analysis of the results

appears in "Investigation and Analysis of the Influence

of Perturbing Forces on Tracking of Orbital Vehicles ,"

STL Report Number 4103-601t-RU-000, extracts of

which have been used in this paper. Studies have also

been performed by the Goddard Space Flight Center

concerning the influence of venting on Apollo earth

parking orbits [ l].

Because of the heat input to the tanks in which

propellant remains_ gases must be vented from ve-

hicles during orbital operations. Such phenomena are

characteristic of the Saturn class vehicles where an

orbiting stage is approximately two-thirds filled with

liquid hydrogen and oxygen, and where propellant loss

must be minimized. The gaseous venting also results

from trapped or residual propellants after final burn-

ing of the stage is completed. This gas leakage or

venting may impart a small propulsive thrust to the

vehicle,- either continuous or intermittent, both types

of which are studied.

The effects of a propulsive thrust on earth orbits

are of two types: orbit and tracking. The orbit effects

are the changes in vehicle coordinates that result

from the application of the thrust. The tracking

effects are the errors in prediction of the vehicle

coordinates caused by the thrust effects on the orbit

determination model and the tracking data.

Two methods of determining the effects of a pro-

pulsive thrust on earth orbits have been used. Most

of the results presented were obtained from an in-

tegrating trajectory program, since this allowed the

generation of radar data to be used in the calculation

of tracking effects. Analytic expressions and sample

resultsare also presented because they allow a sim-

pler method of calculation under certain conditions.

I. INTRODUC_ON

.II. COORDINATE SYSTEMS AND REFERENCE

ORBIT

This paper presents some of the results of a study

on the effect of gas leakage and venting of gases on

earth orbits performed by Thompson Ramo Wooldridge,

Inc., Space Technology Laboratories, for the George

C. Marshall Space Flight Center under National Aero-

nautics and Space Administration Contract Numbe_

The effective differences between the coordinates

of a thrusting vehicle and a nonthrusting vehicle with

the same initial conditions have been studied in a co-

ordinate system centered at the nonthrusting vehicle

which defines the position of one vehicle relative to

the other. The axes are defined with the u-direction
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radial, the v-direction horizontal in the direction of

" motion (downrange), and the w-direction out-of-plane.

Center of Earth I_
-_-_ w _'Y

l hic

11

Anominally circular orbitwas chosen as the ref-

erence orbit for the studies of the effects of low

thrust. This orbit is equatorial, with its initial posi-

tion on the X-axis and its init_l velocity in the Y-

direction, where the XYZ coordinates form an earth-

centered inertial system with X toward the vernal

equinox and Z toward the north pole. Thus, the Z-

direction and the w-direction coincide.

HI. CONTINUOUS THRUST

A. Integrated Effects. The orbital position dif-

ferences between a nonthrusting vehicle and tee

thrusting with a continuous acceleration of 5 (10 -s) g

were determined using aSpace Technology Laboratory

integrating trajectory program. The 5(10 -s) g ac-

celeration corresponds to a thrust level for a Saatrn V

type orbiting vehicle o1 approximately 62 newtons (i4

lb). The thrusting vehicle in a 200-km circular orbit

was given the acceleration of 5( 10 -5) g in each of the

u, v, and w directions separately, and the effects in

each of the directions were analyzed. Figures 1-3

show results of these fixed thrusts. For the partic-

ular thrust level and orbit used, the following con-
clusions can be drawn from the curves:
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_. /\
+ / \
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40
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FIGURE 3. EFFECT OF 5( l0 -5) g CONTINUOUS

THRUST, v EFFECT OF u, v, w
THRUST

m

a. The only significant effect of 0ut-of-plane
thrust is in the out-of-plane direction ( Fig. 1).

b. The only significant effects of in-plane thrusts

are in-plane (Fig, 2, 3).

C"L The downrange effectof an in-plane thrust is

larger than the radial effect after about half an orbit

(Fig. 2, 3).

B. Analytic Comparison. Analytic expressions,
derived for the effects of continuous low thl"ust, are

based on linear perturbations of a nominally circular

orbit, In the uvw-coordinate system, the differential

equations are

an = _i- 3_u- 2_

av = _ + 2_u

aw = _v"+ 0flw,
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whe re - ,

27r
w=angularfrequency, w=-._ (P=orbital period)

and

au, av, aw = acceleration in the u, v, wdirections.
$¢

A comparison between the integrated and the

analytic method is shown as solid curves in Figures 4

through 7.

The analytic formulation depends on the orbit be-

ing nearly circular. The approximations involve set-

ting cos e = 1 and sin e = 0, where e is the eccentricity

of the orbit. For elliptical orbits in the range of 150

to 700-kin altitude, e <.05, the approximation is good

enough for results thatare to be presented graphically.

C. Altitude Variation Effects. The altitude of

the nominal circular orbit affects the position devia-

tion caused by a continuous low thrust. Figures 4

through 7 show some typical examples of the effects
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of changing the altitude from 200 km to 700 km. The

amplitude of the effect of a thrust in the w (out-of-

plane) direction is inversely proportional to the square

Position Error (kra)
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FIGURE 6. COMPARISON OF INTEGRATED AND

ANALYTIC RESULTS, u EFFECT OF

v THRUST, 5(I0-5)g CONTINUOUS

of the angular frequency, as seen in the equations of

paragraph B. The v (downrange) effect of a downrange

thrust is essentially independent of altitude ( Fig. 7).

D. Tracking Effects. The effects of continUous

low thrusts on the tracking of earth orbits were deter-

mined with Space Technology Laboratory programs by

doing actual fits to noise-free tracking data generated

by the perturbed trajectories, and then comparing the
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resulting estimated orbits with the actual orbits. The
observations were generated and processed to obta_

the initial conditions of the nonthrusting orbits which

best fit the data in a least squares sense. The dif-

ferences between the original thrusting orbits and the

orbits resulting from the initial conditions found by

the tracking analysis were calculated.

The orbit used was nominally circular at an alti-

tude of 200 kin with zero inclination and was perturbed

by an acceleration of 5( 10 -5) g in various directions.

Observations were made by three tracking stations

located at one degree north latitude and 15, 135, and

255 degrees east longitude. Range, azimuth, and

elevation observations were taken every ten seconds

during the period of visibility of the vehicle to each

station. Tile one-sigma uncertainties were assumed

to be 10 meters in range and. 015 degrees in azimuth
and elevation.

Figures 8 through 10Show the u, v, and w effects

of u, v, and w thrust on the prediction of the orbit

from three tracking passes. These curves show that

downrange thrust gives the largest in-plane tracking

effects, just as it gives the largest in-plane orbit

effects. Also, in-plane thrusts give an out-of-plane

tracking error even though they cause no out-of-plane
perturbations of the orbit. This is a result of using

tracking data from stations out of the orbit plane.

Because downrange thrust in the downrange direc-

tion gives the largest tracking effects," it was chosen

for more detailed study, the results of which are

shown in Figure 1t. In this figure the error in the

prediction of the vehicle downrange position is pre-

sented with the number of tracking passes as a param-

eter. The error during the tracking intervalis small-

er than the error after the interval, because the fitting
procedure has no information about errors where
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there are no observations. As more passes are used,

the fit during the tracking interval has more error,

since the actual thrusting orbit is approximated by a

nonthrusting orbit in the tracking program.

Figure 12 shows the downrange tracking estimate

error for downrange thrust as a function of time after

the last observation. The bestprediction occurs when

only the last radar pass is used in the fit.

One technique by which the error caused by the

thrust canbe reduced is to introduce it as an unknown
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in the orbit determination process. All available

tracking data cant hen be used to predict the magnitude

and direction of the thrust. The actual application of

such a technique could be a problem if the thrust is

small. No investigations of this approach have been
made.

IV. PERIODIC THRUST

A. Vent Interval Effect. The effects of a random

type low thrust on a nominally circular 200-kin orbit

have been studied. A random low thrust may result

from gas leakage, from uncertainties in'continuous

venting, or from a combination of the two. No matter

what the cause, in this study the uncertain thrust is

assumed to be fixed in magnitude and direction rel-

ative to the body axes. The effects can then be ana.-

lyzed with the analytic expressions developed for the

position errors resulting from a fixed thrust. The
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effectsof intermittentventing can be divided into orbit

• effects and tracking effects just as for continuous low

thrust.

The velocity addition from the venting and the

d_ration of venting are p_ropo_-_donal to the interval be-

tween ventings. The case considered is as follows:

3.0 rainV = I. 5 m/s T and T =---- T,
80 min 80 rain

where

V = velocity added by the venting in m/sec

T = duration of the venting in minutes

T = interval between ventings in minutes.

The duration of venting for the nominal case is3. 0

minutes; the _¢elocity, 1. 5 m/sec; and the vent inter-

val, 80 minutes. According to rids model the average
acceleration is the same for all intervals and is .0081

m/sec 2 =. 00083 g.

Regardless of the frequency or duration of vent-

ing, an ullage firing must occur immediately before

each venting t5 settle the propellants in the tank.

ullage firing is assumed to have the following charac-

teristics: duration, 30 seconds; velocity addition, . 34

m/sec; average acceleration, . 011 m/sec z =. 0011 g.

Figures 13 through 15 show the position error
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caused by intermittent thrust (50 minute periedic)

compared with those caused by continuoLm thrust.

The intermittent thrustcauses more pronounced short

period effects than the continuous thrust. The effects

of intermittent venting can be approximated by con-

sidering the sum of the effects of a series of velocity

impulses. The response to each impulse can be cal-

culated with the velocity components as initial condi-
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tions. Figures 16 and 17 show two typical examples

of the effects of varying the vent period. The short

period effects are quite sensitive to the frequency of

venting.
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B. " Tracking Effects. The effects of intermittent

venting on the prediction of earth orbits from tracking

data were analyzed with the same procedure and

tracking model used for continuous thrust. Since it is

the largest, the downrange error due to a downrange

thrust is shown for illustration. The error is plotted

in Figure 18 with the number of tracking passes as a

parameter. Just as for continuous thrust, the predic-

tion error increases as more radar passes are used.

FIGURE 18. EFFECT OF VARIATION IN NUMBER

OF TRACKING PASSES, v EFFECT

OF v THRUST, 50 MINUTE PERIODIC

It is best, therefore, to use only the latest pass as

long as the random errors associated with it are small

enough (Fig. 19) and as long as the thrust is not

solved for in the orbit determination process.
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PUBLICATIONS AND PRESENTATIONS

A. PUBLICATIONS

TECHNICAL MEMORANDUM X-53034

October 13, 1964

THE EFFECT OF LOCATION AND SIZE OF PRO-

PELLANT TANKS ON THE STABILITY OF SPACE

VEHICLES CONSIDERING SLOSIIING IN TWO OR

THREE TANKS

By

Alberta C. King

in parametric form. Well known propulsion perform-

ance equations are given with modifications to admit

programming of mixture ratio shifts and throttling of

propellant mass flow rate. Parameters used in mass

and space envelope equations were nominal input de-

sign parameters in common with the propulsion per-

formance equations such that their interdependence

could be manifested in a vehicle trajectory and per-

formance optimization study. Though results arebased

on current type engines, it is expected that coefficients

and exponents used may be readily modified to define

mass and size of moderately advanced rocket engines.

George C. Marshall Space Flight Center

Huntsville, Alabama TECHNICAL MEMORANDUM X-53054

ABSTRACT

The effect of propellant oscillations on the re-

sponse and stability of a space vehicle is of major im-

portance. The main contributing factors are (1) tank

location, (2) tank geometry, which determines natural

frequency and sloshing mass, and (3) propellant damp-

ing (due to wall friction and antislosh devices). This

report contains a study of the effect of these contribut-

lag factors on the stability of a rigid space Vehicle

with an ideal control system. The results are given

as root locus plots with tank location as parameter.

June 2, 1964

STABILITYANALYSIS OF SATURN SA-6 WITH RATE

GYRO FOR S-IV CONTROL DAMPING

By

Philip J. Hays

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

TECHNICAL MEMORANDUM X-53053

June 2, 1964

BOOSTER PARAMETRIC DESIGN METHOD FOR

PERFORMANCE AND TRAJECTORY ANALYSIS

PART H: PROPULSION

By

V. Verderaime

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

Approximate equations for large, li_luid chemical;
rocket engine mass and space envelope are presented

A control feedback stability analysis was per-

formed on Saturn SA-6 during S-I and S-IV stage

powered flight. Predicted flight damping values were

used in the sloshing stability analysis for both stages

of flight. Stability was achieved for both stages of

fligh t although marginal stability was observed in the

S-IV LOX tank during booster flight. The marginal

stability is due to the interaction between the sloshing

and vehicle structure.

Theoretical and experimental bending frequencies

were compared during booster flight using the experi-

mentally obtained structural damping. Theoretical

bending data were used for the S-IV flight with one per-

cent structural damping assumed.

Bending mode stability was achieved by two

methods: phase stabilization and gain _ stabilization.

Gain stabilization was employed for all elastic ' modes

in the roll and c_-channels. The _0-channel phase

stabilized the first lateral bending mode and gain sta-
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bilized the higher modes. The elastic modes in the

-_0 -channel were gain stabilized for the S-IV flight.

TECHNICAL MEMORANDUM X-53055

June 3, 1964

STUDY OF MANNED INTERPLANETARY FLY-BY

MISSIONS TO MARS AND VENUS

By

Rodney Wood, Bobby Noblitt, Archie C. Young, and
Horst F. Thomae

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report contains the results of an "in dep_"

mission analysis study of manned interplanetary fly-"

by missions to Mars and Venus during the 19701s

usingApollo technology and hardware -wherever pos-

sible. The usual conic and impulsive velocity techni-

clues were used in this study; however, a precision

integrated fly-by trajectory to Mars during the 1975

opposition is included.

TECHNICAL MEMORANDUM X-53056

June 4, 1964

THE AERODYNAMIC CHARACTERISTICS OF SATURN

I/APOLIX) VEHICLES (SA-6 AND SA-7)

By

Billy W. Nunley

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

This report presents the final aerodynamic char-

acteristics of the Saturn/Apollo vehicles. These data
arebased on wind tunnel tests of scale models. Nor-

mal force coefficient gradient, normal force coeffi-

cient, center of pressure, total power-on and power-

off drag coefficient, power-onand power-off base drag

coefficient, and forebody drag coefficient are presented

fortheMach number range from 0 to 10. Local force

coefficient distributions are presented for various

Mach numbers ranging from 0.20 to 4.96. These data

are for zero angle of attack with the exception of the

gradients, which are slopes at zero angle of attack,

and the normal force coefficients, which are a func-

tion of angle of attack.

TECHNICAL MEMORANDUM X-53059

June 8, 1964

SPACE VEHICLE GUIDANCE -A BOUNDARY VALUE

FORMULATION

By

Robert W. Hunt and Robert Silber

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

A mathematical formulation of the problem of

guiding one stage of a space vehicle is given as a

botmdaryvalueproblemin differential equations. One

approach to the solution of this problem is to generate

the Taylor's series e:q_nsion (in severalvarlables)

about a lmownsolution. The thenretical nature of such

solutions is discussed, and a method for numerically

computing them is presented. This method entails the

num_ri--cal integra_on of an _soc_t_ed system of .dif-

ferential equations, and canbe used to obtain the solu-

tion to any desired degree of accuracy for points in a

region to be defined. An extension of the method to

the problem of guiding several stages of a space vehicle

is also given, employing fundamental Composite func-

tion theory.

TECHNICAL MEMORANDUM X-53060

July 22, 1964

SA=5 FLIGHT TEST DATA REPORT

By

H. J. Weichel

George C. Marshall Space Flight Center

Huntsville, Alabama
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ABSTRACT ABSTRACT

This report is a presentation of certain flight

mechanical data obtained from the SA-5 flight test. Dig-

itized data are presented in graphical form. Also in-

cluded are oscillograms of the flight measurements.

The intention of the report is to present the digi-

tized data in an easy-to-read form for use by design

and technical personnel. This report is to supplement

the Saturn SA-5 Flight Evaluation Report and many

other reports published by the various laboratories.

TECHNICAL MEMORANDUM X-53062

June 10, 1964

AN AUTOMATED MODEL FOR PREDICTING AERO-

SPACE DENSITY BETWEEN 200 AND 60,000 KILO-

METERS ABOVE THE SURFACE OF THE EARTH

By

Robert E. Smith

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This paper describes the derivation of a computer

routine for predicting the vertical distribution of aero-

space density in the terrestrial space environment a-

bovethesurfaceofthe earth. Solar activity, geomag-

netic storm, diurnal heating, latitude, and the earth's

orbital eccentricity effects are included in this model.

Densities can be predicted for any time through Decem-

ber 1992.

TECHNICAL MEMORANDUM X-53064

June 16, 1964

LATEST WIND ESTIMATED FROM 80 KIVI TO 200 KM

ALTITUDE REGION AT MID-LATITUDE

By

W. T. Roberts

.George C. Marshall Space Flight Center

Huntsville, Alabama

The data from a total of forty rocket launches fired

specifically to determine wind characteristics by the

release of chemiluminescent trails have been compiled

and studied in an attempt to clarify seasonal and diurnal

trends inupper atmospheric winds above 80 kilometers.

From a series of graphs taken at 10-kilometer intervals

a general picture of the change in wind vectors with

height is determined.

Below 120 kilometers there appears to be extreme

variation in speedand direction with very little corre -

lationwith season or time of day discernible. Above

120 kilometers, however, the winds appear to orient

more with season, and above 150 kilometers, some

diurnal variations become apparent.

More experiments of this type, particularly in the

summer and winter months, are needed to establish

confidence in the seasonal and diurnal trends.

TECHNICAL MEMORANDUM X-53071

June 24, 1964

SA-7 PRELIMINARY PREDICTED STANDARD

TRAJE CTORY

By

Jerry D. Weiler

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report presents the preliminary predicted

standard trajectory for Saturn I vehicle SA-7 to be

flown over the Atlantic Missile Range. The nominal

impact area of the S-Ibooster, the recoverable camera

capsules, and launch escape system are also pre-

sented.

A brief discussion of the trajectory shaping and a

description of the vehicle configuration are presented.

The nominal trajectory will insert the S-IV stage

and payload into a near-circular orbit with a perigee

and apogee of 185 kin and 217ok_ altitude, respec-

tively. The nominal lifetime of the orbit is 3.0 days.

The final predicted standard trajectory and dis-
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persion analysis will be published approximately 30

"days prior to launch date.

TECHNICAL MEMORANDUM X-53072

June 24, 1964

MULTIPLE BEAM VIBRATION ANALYSlS OF SAT-

URN I AND IB VEHICLES

By

Larry Kiefliug

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

A method is described for finding the natural modes

and frequencies of a Saturn I or IB vehicle. The vehicle

is idealized as a system of nine connected beams, one

beam consisting of the booster center tank and upper

stages, and each of the other eight beams consisting

of a booster outer tank. A vibration analysis is first

made on each" individual beam by a modified Stodola

method. The "equations for the connected systems are

then derived using Lagrange's equations. A method

for reducing a three-dimensional model to three two-

dimensional models and equations for finding the third

dimension component for the two-dimensional problem

solved are _ven.

A sample comparison is made with dynamic test
data.

T ECHNICAL MEMORANDUM X-53077

July 6, 1964

A METHOD FOR THE DETERMINATION OF CON-

TROL LAW EFFECT ON VEHICLE _BENDING

MOMENT

By

Don Townsend

ABSTRACT

The determination of bending moments which oc-

cur as the vehicle encounters predicted in-flight wind

conditions is an important phase of vehicle design

steadies. Pre._sent!y this _:.-.formation is re_Ared to de-

termine ff the moments induced hy these winds are

within the structural design limits of the vehicle. One

means by which the vehicle's flight through these winds

maybeassured is the optimization of the control sys _

temto reduce bending moments . This analysis is con-

ducted to develop program for cempttting the

coefficients necessary to accomplish this optimiza-
tion.

The relative merits of two different approaches

for calculation of vehicle bending moments are pre-

sented. The two approaches considered are the direct

summation of moments acting on the vehicle, and the

mode displacement method. These are used in con-

junction with existS, programs for the elastic re-
sponse of a vehicle to winds.

The mode displacement method was first used for

determination of bending moments. It required a large

number of bending modes to obtain accurate results.

The summation of moments was then investigated and

foundtogive adequate results which were in _. readily
usable form for control law studies.

The results indicate that a decrease in control

frequency results in a decrease in bending moment.

An increase of the ratio bo/a o from that of drift mini-

mum control, holding the control frequency :constant,

results in a rlecre_.qe jn hen_cling moment.

TECHNICAL MEMORANDUM X-53079

October 7, 1964

AN EXPLICIT SOLUTION FOR LARGE SYSTEMS OF

LINEAR DIFFERENTIAL EQUATIONS

By

Robert E. Cummings and Lyle R. Dickey

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

George C. Marshall Space Flight Center

Huntsville, Alabama

A practical method of obtaining an explicit solu_

tion to -an inhomogeneous system of linear differen-

153



tial equations with constant coefficients is described.

The method is readily adaptable to solving large sys-

tems on high speed digital computers and is particularly

efficient whena large number of solutions are desired

forthe same set of equations with different initial con-

ditions and forcing functions. The problem that often

ari_eawhenlarge eigenvalues are present is overcome

by a unique feature. The solution is obtained for an

exceptionally small integration step,and a process is

described whereby the step can be doubled. Succes -

sive applications of this process provide a solution

o_er an interval which increases exponentially in size

with each step;whereas, the work involved increases

only in a linear fashion. This is particularly advan-

tageous since standard techniques require that special

provisions must be made for any system which has

exceptionally large eigenvalues.

TECHNICAL MEMORANDUM X-53081

October 12, 1964

CALCULATION OF TRANSONIC NOZZLE FLOW

By

Joseph L. Sims

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

An approximate solution of the transonic throat

flowina DeLaval nozzle is found by expanding the po-

tential function in a power series about the critical

line. Five terms were used in the present series ex-

pansion, and the complete potential flow equation of

motion was used.

Solutions of the present set of equations are func-

tions of two independent parameters: the radius of

curvature of the nozzle wall and the ratio of specific

heats of the fluid medium. The solution of the result-

ant equations is complex enough to make an electronic

computerprogram desirable. For this reason, basic

results of a series of solutions over a wide range of the

two independent parameters are given in tabular form.

From these tabulated results, any quantities of interest

in the flow field may be rapidly computed.

TECHNICAL MEMORANDUM X-53088

July 16, 1964

THE REDUCED THREE-BODY PROBLEM: A GEN-

ERALIZATION OF THE CLASSICAL RESTRICTED

THREE-BODY PROBLEM

By

Gary P. Herring

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

The restricted three-body problem is generalized

to include the motion of the earth and moon on coplanar

Keplerianellipses of eccentricity c, (0 - _ < 1). The
ec]uations of motion are written in a space-fixed co-

ordinate system. After accomplishing a normalization

of the equations in this system, the normalized equa-

tions are transformed to a rotating coordinate system.

Transformations of the results to several other sys-
tems of interest are given.

TECHNICAL MEMORANDUM X-53089

July 27, 1964

STUDY OF SPHERE MOTIONS AND BALLOON WIND

SENSORS 1

By

Paul B. MacCready, Jr. 2

and Henry R. Jex 3

IThis study was performed by Meteorology Research,

Inc., Altadena, California, as part of NASA Contract

NAS8-5294 with the Aero-Astrodynamics Laboratory,

Aero-Astrophysics Office, Marshall Space Flight Cen-

ter, Huntsville, Alabama. Final Report MR164 FR-

147, April 1964.

2Meteorology Research, Inc.

3SystemsTeehnology, Inc., Inglewood, California, as

consultant to Meteorology Research, Inc.
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ABSTBACT

Balloonsascendingin still air typicallyexhibit
lateral movementswhichintroduceerrors whenthe
balloonsare tracked as sensors of wind motion. This

report examines some of the fundamentals of the fluid

flows and associated motions and net drag coefficients

of free-moving spheres. The flows and motions de-

pend directly on Reynolds number (Rd) which deter°

mines theflow regime; depend on the relative mass of

the sphereto the fluid it displaces (RM) because, for

a given Rd, the lower the RM values the greater the

lateral motions and thus the larger the total wake size

and drag; and also depend on the sphere rotational

inertial and minute details of surface roughness, sphe-

ricity, and random orientation. Because of these com-

plex interaetion_no unique drag coefficient (CD) vs R d

curve can be found for free-moving spheres. The

separate effects of the main factors are described as

they might affect an idealized C D vs R d curve for a
perfectly smooth free-moving sphere of infinite RM.

Observations were made of the mean vertical and

velocity and the n_gnitude of the lateral motions as

spherical balls and balloons ascended and descended

through both water and air, covering wide ranges of

R d and RM. The results are in general agreement

with the physical concepts developed, and the water

experiments give results consistent with the tests in

air. In the subcritical R d regime, where the wake

separation is laminar, the motion tends to be a fairly

regular zigzag, or spiral, of wave length on the order

of 12 times the diameter. The magnitude of the lateral

motion is roughly related to the factor ( _ + 2BM)- 1

In the supercritical R d regime, where the wake sep-
aration is turbulent and the wake is smaller, the

motion tends to be an irregular meandering spiral. In

the critical range of R d the shift from subcritical to

supercritical (andviceversa) flows and drags is rather

abrupt; ff sufficiently abrupt, there is a" hysteresis

effect with increasing and decreasing Reynolds num-

ber, and two stable velocities exist.

Tests were also made in air with spheres to which

skirts, vanes, and/or drag chutes were affixed in an

effort to stabilize the motion.

It is concluded that balloon motion can be smooth

enough for most needs for high resolution atmospheric

wind data if spherical or semi-spherical balloons are

used operating always inthe subcritical range, or cer-

tainballoons are used with roughness elements or other

attachments operating at even higher Reynolds number.

July 24, 1964

COMPARISON OF MISSION PROFILE MODES FOR

ACHIEVING TEST OBJECTIVES ON SATURN V

REENTRY QUALIFICATION FLIGHTS

By

JohnB. Winch, Roy C. Lester and Frank M. Graham

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

The more optimum mission profile modes for a-

chieving the launch vehicle and the spacecraft test

objectives on Saturn V missions prior to manned Apollo

flights have been critically investigated and analyzed.

The vast number of possible profiles have been re-

duced to five principal methods.

Method one, whichisessentiallyalob shot, is un-

acceptable since it would require trajectory reshaping

and extensive payload off-loading.

The method two profile permits incorporation of

all available propulsion systems and uses a circular

parking orbit as will the operational vehicle; however,

it is unacceptable due to unfavorable maneuvers re-

quired to achieve an adequate coast prior to satisfying

reentry conditions.

Methods three, four, and five are acceptable pro-

files, but method four is not recommended primarily

due to unmanned operation of the midcourse guidance

system, long flight time, and two propulsion periods

required of the service module.

In this report, methods three and five are pre-

sented in detail. Method five differs principally from

method throe and the operational flight by replacing the

circular parking orbit with an elliptical parking orbit

and not requiring any burns of the service modulets

propulsion system.

Off all the methods investigated, the method three

profile offers the most satisfactory solution to the re-

entry problem.

TECHNICAL MEMORANDUM X-53098

TECHNICAL MEMORANDUM X-53097 July 16, 1964
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THREE -DIMENSIONAL MULTIPLE BEAM ANALYSIS

OF A SATURN I VEHICLE

By

James L. Milner

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

A normal mode vibration analysis was made of a

Saturn I v.ehicle using a newly developed lumped para-

meter multiple beam representation incorporating cou-

plingof the center tank motion in pitch, yaw, and roll

withthe motion of the outer tanks. The analysis dem-

onstrates the uncoupling of motions in pitch, yaw, and

roll for a vehicle having a symmetrical distribution of

maSS and stiffness. A few cases of nonsymmetry were

examined and numerical results were obtained which

showthe effect of vehicle nonsymmetry on the natural

frequencies of the vehicle.

TECHNICAL MEMORANDUM X-53100

July 28, 1964

SPACE VEHICLE GUIDANCE - A BOUNDARY VALUE

FORMULATION

PART II:

BOUNDARY CONDITIONS WITH PARAMETERS

By

Robert Silber

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report contains an extension of the results

presented in NASA Technical Memorandum X-53059,

"Space Vehicle Guidance - A Boundary Value Formula-

tion," by Robert W. Hunt and Robert Silber, June 8,

1964. In that memorandum, the control laws for space

vehicle guidance were formulated as a set of functions

implicitly defined by a set of boundary conditions. In

this report the domain of the control laws is augmented

to contain mission parameters. In this way, the con-

, trol laws are defined for a family of missions rather

than for a single mission.

TECHNICAL MEMORANDUM X-53104

August 10, 1964

AN AUTOMATED MODEL FOR PREDICTING THE

KINETIC TEMPERATURE OF THE AEROSPACE

ENVIRONMENT FROM 100 TO 60,000 KILOME-

TERS ABOVE THE SURFACE OF THE EARTH

By

Robert E. Smith

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This paper describes the derivation of a series

of equations capable of predicting the kinetic tempera-

ture of the aerospace environment from 100 to 60,000

kilometers above the surface of the earth. The equa-

tions, which are programmed on a GE 225 computer,

can be usedto predict temperature-height profiles for

any time through December 1992.

TECHNICAL MEMORANDUM X-53108

August 17, 1964

CHARACTERISTIC FEATURES OF SOME PERIODIC

ORBITS IN THE RESTRICTED THREE-BODY

PROBLEM

By

Wilton E. Causey

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

Earth-moon orbits are presented which, when re-

ferred to a rotating coordinate system, return period-

ically to their original set of state variables. Infor-

mation concerning the period of the orbit, time spent
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inthe region between earth and moon, close approach
" distance to the moon, and closest approach distance to

the earth is given for various families of periodic or-

bits. These orbits have periods of 1 to 4 months, and

they have at least one perpendicular crossing of the

earth-moon line on the back side of the moon.

TECHNICAL MEMORANDUM X-53t09

August 19, 1964

NUMERICAL PROCEDURES FOR STABILITY

STUDIES

By

Robert S. Ryan

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

This report presents the numerical procedures

used by the Aero-Astrodynamics Laboratory in per-

forming stability analysis for large space vehicles with

a more complex control system, and wherein a large

number of modes of oscillation must be co.nsidered.

The modes of oscillation included in the system are

(1) bending, (2) translation, (3) pitching, (4) slosh-

ing, and (5) swivel engine. Equations describing the

characteristics of the control sensors are included for

rate gyros, accelerometers, andangle of attack meter.

Two numerical methods for solving the system for its

eigenvalues are presented: the characteristic equation
andthe matrix iteration approach. Finally, a plan for

using the procedures in evaluating a vehicle for sta-
bility, filter design, and propellant damping is also

developed.

TECHNICAL MEMORANDUM X-53112

August 20, 1964

MONTE CARLO SOLUTIONS OF KNUDSEN AND

NEAR-KNUDSEN FLOW THROUGH INFINITELY

WIDE, PARALLEL AND SKEWED, FLAT PLATES

By

James O. Ballance

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This study presents the results of an investiga-

tion of Knudsen flow and near-Knudsen flow through

infinitely wide, parallel and skewed, flat plates. Monte

Carlo computer techniques were used. Two simple

models for considering molecule-molecule interac-

tions, as well as molecule-surface interactions, were

used to examine the near-Knudsen flow regime. Trans-

mission probabilities for various length-to-entrance

ratios and for various angles of skewness are pre-

sented. The influence of mean free path and length-

to-entrance ratios on Knudsen flow determination is

discussed.

TECHNICAL MEMORANDUM X-53113

August 20, 1964

CALIBRATION TESTS OF THE MSFC 14 x 14-INCH

TR_ONIC WIND TUNNEL

By

Erwin Simon

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report presents calibration data obtained
from the MSFC 14 x 14-inch trisonic wind tunnel for

the Mach range of. 2 through 5.0. Pressure distribu-

tion data for the 20* cone-cylinder are presented for

the Mach range of. 90 through 5.00. Static pipe Mach

number surveys are presented for the entire calibrated

Mach range of . 2 through 5.0. Flow inclinations are

presented for the Mach range of. 2 through 5.00.

TECHNICAL MEMORANDUM X-53115

August 24, 1964

DETAILS OF WIND STRUCTURE FROM HIGH RESO-

LUTION BALLOON SOUNDINGS

By
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J. R. Stinson, A. I. Weinstein, and E. K. Beiter"

ABSTRACT

The tracking of spherical superpressure balloons

by an FPS-16 radar has generated accurate data con-

cerning the winds in the upper troposphere and lower

stratopshere. Above about ll km the winds are ob-

tained to high resolution, while below this altitude

spurious balloon motions mask the fine structure of

the wind although the gross features of the wind are

still accurately displayed. At Cape Kennedy 87 sound-

ings are investigated, with most attention being focused

on 2 series of 9 and 18 soundings spaced approximately

45 minutes apart.

All the soundings, covering various meteorolog-

ical situations, show a large amount of microstruc-

ture in the wind field above the tropopause, with shears

of 2 mps/100 m being observed on all soundings, shears

exceeding 5 mps/100 m being observed occasionally,

and with the speed (and direction) variations tending

to occur with vertical wave lengths of 0.5 to 2 km. The

shears occur at an altitude range and are of a magni-

tude and wave length where they can significantly affect

vertically rising rocket launch vehicles.

The sequence soundings showthat the large meas-

ured individual speed variations tend to persist for a

matterofhours, sometimes exceeding 6 hours. Thus,

the variations are not turbulence but are instead mani-

festations ofanintricate vertical layering of the air at

these levels. The persistence is such that a forecast

of the major shears, based on a one- to three-hour

extrapolation of a sounding, appears moderately re-

liable.

Three possible physical models for mesoscale

circulationto explainthe observed shears are selected

for special consideration: (1) stackedlayers of alter-

nating inertial oscillations, (2) phase shifts with

height of standing gravity waves (lee waves) in suc-

cessive atmospheric layers, and (3) paired longitudi-

nalvortices (helicance). Each model is supported by

some segments of the data and contradicted by others.

It is concluded that more measurements with FPS-16

radarand other tools are needed before a decision can

be reached as to the exact physical cause of the ob-

served shearing phenomena.

TECHNICAL MEMORANDUM X-53116

August 27, 1964

AN EMPIRICAL ANALYSIS OF DAILY PEAK SUR-

FACE WIND AT CAPE KENNEDY, FLORIDA,FOR
PROJECT APOLLO

By

J. David Lifsey

George C. Marshall Space Flight Center

Huntsville, Aiabama

ABSTRACT

A fourteen-year serially complete data sample of

daily peak surface wind at Cape Kennedy, Florida, was

obtained from historical weather records. After ad-

justing speed values to a reference height of 10 me-

ters above the ground and removing "hurricane-associ-

ated" peakwinds, monthly, seasonal and annual values

were computed for the following: selected percentiles

and statistics; bivariate empirical percentage fre-

quency distributions of (1) speed versus direction,

(2) speed versus hour of occurrence, and (3) hour

of occurrence versus direction; and exposure period

probabilities (empirical percentage frequencies) of

equaling or exceeding peakwind speeds of various mag-

nitudes during consecutive-day time intervals. Use

of the results is aided by specific examples and a fur-

ther development ofl_heoretical frequency distributions

is proposed. This study is unique in terms of the data

sample and the amount of information presented. The

results can be used in many areas of research and

operation.

TECHNICAL MEMORANDUM X-53118

August 28, 1964

DISTRIBUTION OF SURFACE METEOROLOGICAL

DATA FOR CAPE KENNEDY, FLORIDA

By

J. W. Smith

George C. Marshall Space Flight Center

Huntsville, Alabama

Meteorological Research Corporation ABSTRACT
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Thermodynamic surface data for Cape Kennedy,

Florida, have bcen analyzed, and are presented graph-

ically in this study. The medians and extremes, plus

the cumulative percentage frequency levels of 0. 135,

2.28, 15.9, 84.1, 97.72, and 99.685 percent, are

shown for temperature, pressure, density, vapor

pressure, mixing ratio, enthalpy, refractivity, andre-

lativehumidity. These data are presented for hourly,

monthly and annual periods, and are discussed briefly.

By

Jerry D. Weiler and Onice M. Hardage, Jr.

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

TECHNICAL MEMORANDUM X-53119

August 28, 1964

PRELIMINARY CAPE KENNEDY ATMOSPHERIC

DATA FOR NUCLEAR OR TOXIC PARTICLES

DISPERSIVE STUDIES

(August 1962 -July 1963)

By

Charles K. Hill

George C. Marshall Space Flight Center
Huntsville, Alabama

ABSTRACT

This presentation of one year of climatic data

(August 1962 - July 1963) for the lowest 1524 meters

(5000 feet) at Cape Kennedy, Florida, is the most

complete to date. Some monflfly statistical values

(daytime and nighttime) of the following parameters

have been plotted in Figures 1 - 56: wind roses, sca-

larwind speeds, dewpoint, ambienttemperature, den*

sity andpressure. Rawinsonde observations were used

toobtain the measurements for each 152-meter (500-

foot) level from 152 to 1524 meters ( 500 to 5000 feet).

Surface measurements were recorded from local

ground instrumentation. Not all levels of wind rose

and pressure data were used, but these and all data

appearing herein pins additio_,-al statistics on vertical

wind shears and absolute and relative humidity may be

obtained in tabulated form upon "request to the Aero-

Astrophysics Office of Marshall Space Flight Center.

TECHNICAL MEMORANDUM X-53120

August 13, 1964

FINAL PREDICTED TRAJECTORY AND DI_PERSION
STUDY FOR SATURN I VEHICLE SA-7

This report presents the final predicted standard

trajectory and dispersion analysis for Saturn I vehicle

SA-7tobeflownover the Atlantic Missile Range. The

nominal impact area of the S-I booster and the re-

coverable camera capsules is presented, along with a

discussion of the trajectory shaping and a description

of the vehicle configuration.

The nominal trajectory will insert the S-IV stage

and payload into a near-circular orbit with a perigee

andapogee of 182 km and 229-km altitude, respective-

ly. The nominal lifetime of the orbit is 3.2 days.

TECHNICAL MEMORANDUM X-53123

August 21, 1964

SATURN SA-6 POSTFLIGHT TRAJECTORY (U)

By

Gerald R. Riddle and Robert H. Benson

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report presents the postflight trajectory for

the SaturnsA-6 test flight. Trajectory dependent para-

meters are given in earth-fixed, space-fixed, and

geographic coordinate systems. Acomplete time his_

tory of the powere d flight trajectory is presented at

1.0 sec intervals from first motion through insertion.

Tables of insertion conditions andvarious orbitalpara-

meters are included in a discussion of the orbital por-

tion of flight. A comparison between nominal and ac-

trajectory dependent parameters is also presented.

TECHNICAL MEMORANDUM X-53124

September 3, 1964
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LUNARENVIRONMENT:ANINTERPRETATIONOF
THESURFACEOFTHEMOONANDITS

ATMOSPHERE

By

JohnR. Rogers andOthaH. Vaughan,Jr.

GeorgeC. MarshallSpaceFlightCenter
Huntsville,Alabama

ABSTRACT

This MSFCreport onthelunarenvironmentre-
presentsthefirst ofaseriesofreportsentitledSpace
EnvironmentCriteriaGuidelineS. Subsequent reports

will discuss matters pertinent to other space environ-

ments including (1) the earth's atmosphere above 100

km; (2) the atmosphere and surface of Mars; (3) the

atmosphere of Venus; (4) the radiation environment

of space; (5) the meteoroid environment of space; and

•(6) the magnetic and gravitational fields of the earth,

moon, and the planets. The present study and these

future studies are intended for use by MSFC in future

lunar and space programs. These studies as presently

envisaged will complement work being done on space

environments at other government and contractor facil-

ities.

Under the heading of lunar topographic features

comparative analyses have been made of several geo-

logical classifications of lunar features based on in-

ferred age relationships. Also, a discussion of the

major landforms, Continents and Maria, is included.

The genetic classification, based on inferred geological

origin of the various lunar landforms, attempts to

compare by analogy certain lunar •features with their

interpreted terrestrial counterparts.

A deliberate attempthas been made to be objective

andto drawfromthe entire spectrum of lunar geologi-

cal knowledge some specific conclusions regarding the

somewhat controversial origins of lunar features. A

practical approachhas beentaken in identifying certain

features as predominantly impact in origin versus vol-

canic since it is realized that many decisions have to

be made now regarding future lunar surface vehicles

and missions. An iadependent judgment has been made

concerning the genetic significance of certain lunar

features and in such cases the authors of this report

assume full responsibility for their tentative con-

clusions.

Engineering Specialist, Brown Engineering Com-

pa.ny.

Since design criteria for a stationary vehicle will

not suffice for future missions involving mobility, this

report provides design criteria parameters for both

mobile and stationary vehicles. A need exists for re-

liable small scale data to obtain lunar surface cri-

teria based on "real-case" conditions instead of

"worst-case" assumptions.

TECHNICAL MEMORANDUM X-53128

August 25, 1964

AERODYNAMIC EVALUATION OF SA-6 FLIGHT

By

Fernando S. Garcia

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report presents results from the aerodynamic

evaluationofSA-6, the second flight test of the Saturn

I Block H series. Evaluation of telemetered data in-

cluded stability analyses, fin loading calculations and

environmental pressure analyses. Environmental

pressure data fromSA-5 are also shown for compari-

son.

The flight-determined center of pressure and nor-

real force for the vehicle agreed well with predicted,

and deviations fell within the telemetry error margins.

Localized pressure loadings obtained by measure-

ments located on Fin II were in poor agreement with

theory.

Heat shield pressures measured on SA-6 for the

most part agreed well with SA-5 results. Flight re-

sults were higher than wind tunnel data from hot jet

tests, especially at transonic Mach numbers.

Insidethe tail compartments, a uniform pressure

distribution (which was generally near the predicted

level) was observed throughout. This is in contrast

to what was measured on SA-5 where a large varia-

tion within the same compartment was noted.

TECHNICAL MEMORANDUM X-53130

September 17, 1964
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A SYSTEM OF EQUATIONS FOR OPTIMIZED

POWERED FLIGHT TRAJECTORIES

By

Gary McDaniel

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

TECHNICAL MEMORANDUM X-53133

September 16, 1964

SA-6 FLIGHT TEST DATA REPORT

By

H. J. Weichel

George C. Marshall Space Flight Center

Huntsville, Alabama

The equations of motion for a vehicle with thrust,

.lift, and drag forces, and a Newtontan gravitational

force are derived in an earth-fixed polar coordinate

system. This system of equations forms the differen-

tial equations of constraint futile calculus of variations

formulation of minimizingflighttime between two sets

ofboundary conditions with inqquality constraints im-

posed on the magnitude of the angle o_ attack or the

product of the dynamic pressure and the magnitude of

the angle of attack. The necessary conditions for op-

timality are given exclusive of derivation. Also, a

computational scheme is given suitable for a digital
computer program.

TECHNICAL MEMORANDUM X-53132

September 3, 1964

STABILITY CONDITIONS OF THE LOWER ATMOS-

PHERE AND THEIR IMPLICATIONS REGARDING

DIFFUSION AT CAPE KENNEDY, FLORIDA

By

James R. Scoggins and Margaret B. Alexander

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report describes the atmospheric stability

conditions at Air Force Station 700 on Cape Kennedy.

The data are presented by time of day, month, sea-

son, and annually. Results are categorized and pre-

sentedgraphicallyandtabularlyto indicate qualitative-

ly the diffusion conditions and best months and hours

for handling toxic fuels or launching vehicles that use
fuels.

ABSTRACT

This reportis a presentation of certain flight me-

chanical data obtained from the SA-6 flight test. "Dig-

itized data ar_ presented in graphical form. Also

included are schematic drawings showing the instru-
ment location on the vehicle.

The intention of this report is to present the dig-

itized data in an easy-to-read form for use by design

and technical personnel. This report is to supplement

the Saturn SA-6 Flight Evaluation Report and many

other reports published by the various laboratories.

TECHNICAL MEMORANDUM X-53134

September 21, 1964

PROBABILITY OF S-IVB/IU LU_R IMPACT DUE

TO GUIDANCE ERRORS AT TRANSLUNAR INJEC-

TION

By

Roy C. Lester

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT (U)

Usinga Monte Carlo random sampling technique

for the guidance errors at translunar injection, a pro-

bability distribution of radii at lunar arrival is gener-

ated. From this distribution the probability of lunar

impact is determined.

TECHNICAL MEMOi_NDUM X-53139
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September 23, 1964 ABSTRACT

A REFERENCE ATMOSPHERE FOR PATRICK AFB,

FLORIDA, ANNUAL (1963 REVISION)

A REFERENCE ATMOSPHERE FOR CAPE KENNEDY,

FLORIDA,DEFINED TO 90-Km ALTITUDE

EXTENDED TO 700-Kin ALTITUDE

By

O. E. Smith and Don K. Weidner

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

The reference atmosphere established by this

study is based on the most current annual statistical

parameters of pressure-height, temperature, and rel-

ative humidity for the constant pressure levels from 0

to 28-km altitude and on a defined temperature versus

altitude relationship from 2 8 to 90-kin altitude. It is

also extended to 700-kin altitude by the technique given

in the U.S. Standard Atmosphere, 1962 with latitude

adjustments so that it is directly applicable to Cape

Kennedy. This technique was defined by simplifica-

tion of the expression for geopotential height. C0m-

putedvalues of pressure, kinetic temperature, virtual

temperature, molecular temperature, density, coef-

ficient of viscosity, kinematic viscosity, speed of

sound, molecular weight, pressure ratio, density

ratio, viscosity ratio, andpressure difference are tab-

ulated from 0 to 700-kin altitude.

TECHNICAL MEMORANDUM X-53142

September 3.0, 1964

SPACE ENVIRONMENT CRITERIA GUIDELINES FOR

USE IN SPACE VEHICLE DEVELOPMENT

By

Robert E. Smith

George C. Marshall Space Flight Center

Huntsville, Alabama

#
Senior Mathematician, Brown Engineering Company,

Inc., Huntsville, Ala.

This document provides guidelines on interplane-

tary space, terrestrial space, near-Venus space,

near-Mars space, lunar atmosphere and surfac'e, Ven-

us atmosphere and surface, and Mars atmosphere and

surface environmental data applicable for Marshall

Space Flight Center space vehicle development pro-

grams and studies related to future NASA programs.

This report established design guideline values

for the following environment parameters: (1) me-

teoroids, (2) secondary ejecta, (3) radiation, (4)

gas properties, (5) magnetic fields, (6) solar radio

noise, (7) winds, (8) wind shear, (9) clouds, (10)

ionosphere, (11) albedo, (12) planetary surface con-

ditions, (13) planetary satellites, (t4) composition

of the planetary atmospheres, (15) temperature, and

(16) astrodynamic constants. Additional information

may be located in the references cited.

Extensive use was made of the data prepared by

the Planetary Atmosphere Section, ASTD, Space En-

vironment, Manned Spacecraft Center, Houston, Texas

to insure compatibility of both development and study

effort between Marshall Space Flight Center and the

Manned Spacecraft Center, especially in those, areas

where there are insufficient data to make definite

conclusions.

TECHNICAL MEMORANDUM X-53147

October 5, 1964

ANULTRA-LOW FREQUENCY ELECTROMAGNETIC

WAVE FORCE MECHANISM FOR THE IONOSPHERE

By

J. M. Boyer and W. T. Roberts

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

Present theoretical explanations of the ionospheric

behavior encounter certain difficulties in accounting

for observed geographic, diurnal, and seasonal anom-

#
Principal Investigator, Northrop Space Laborato-

ries, under NASA contract NAS-11138.
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alies. SectionHdiscusses, in particular, thetwo noc-

turnal maximum electron density concentrations which

occur approximately 12 degrees above and below the

geomagnetic equator, their seasonal variation and the

sudden height increases, which occur in the F2 layer

soon after twiiight. In Section HI a theoretical force

mechanism for ionospheric matter, originated by J. M.

Boyer, is briefly described. Such a model uses a

mechanical potential geometry derived from electro-

magnetic standing waves generated by Mie scattering

ofultra-lowfrequency energy from the sun incident on

the earth. The importance of the 1/_02 dependence of

the time average Lorentz force on charged matter with-

in such a standing wave gradient is emphasized, weigh-

ing first order effects toward the first few dipole

multipole resonances of the earth in the region 7.0 to

70.0 cps. Some computer results forplanewave scat-

tering from the earth in the above spectral region are

displayed to show that the result is the erection of a

complex wave geometry of three-dimensional potential

wells for charged matter. Anomalies in the standing

electromagnetic wave field are found to correspond

well with observed ionosphere anomalies in the F2 re-

gion, when translation between the wave coordinate

frame and the geographic frame is made.

TECHNICAL MEMORANDUM X-53148

October 5, 1964

A FORTRAN PROGRAM TO CALCULATE AN ENGI-

NEERING ESTIMATE OF THE THERMAL RADI-

TION TO THE BASE OF A MULTI-ENGINE

SPACE VEHICLE AT HIGH ALTITUDES

By

E. R. Heatherly, M. J. Dash, G. R. Davidson, and

C. A. Rafferty

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

A method of estimating the radiant heat flux in a

base of arbitrary shape from intersection regions

caused by the interaction of hydrogen-oxygen engine

exhaust jets is presented. An approximate method of

generatingthe intersection region shape and tempera-

ture-pressure profiles is discussed. A computerpro-

gram incorporating both of the above is described and

instructions are given for its loading and use. The

accuracy of this program is expected to yield within

an order of magnitude of true value of thermal radia-
tion.

TECHNICAL MEMORANDUM X-53t50

October 16, 1964

PROGRESS REPORT NO. 6 onStudies in the Fields of

SPACE FLIGHT AND GUIDANCE THEORY

Sponsored by

Aero-Astrodynamics Laboratory of Marshall Space

Flight Center
Huntsville, Alabama

ABSTRACT

This paper contains progress reports of NASA-

sponsored studies in the areas of space flight and

guidance theory. The studies are carried on by sever-

al universities and industrial companies. This pro-

gress report covers the period from December 18,

1963 to July 23, 1964. Thetechnicalsupervisorofthe

contracts is W. E. Miner, Deputy Chief of the Astro-

dynamics and Guidance Theory Division, Aero-Astro-

dynamics Laboratory, Marshall Space Flight Center.

TECHNICAL MEMORANDUM X-53151

October 21, 1964

A COMPREHENSIVE ASTRODYNAMIC EXPOSITION

AND CLASSIFICATION OF EARTH -MOON TRANSITS

By

Gary P. Herring

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

The restricted three-body model is used to devel-

op a geometrical and topological taxonomy of the field

of earth-moon transits (both directions) which is

based on conditions at the terminals (perigee and

periselenum). It is presented in such a way as to

promote mental control of the subject.
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The classifying techniques are then employed in

the analysis of free-return transits as well as such

problems as the lighting conditions upon landing.

The report provides convenient reference material

for the engineer involved in the layout of Apollo type

missions.

TECHNICAL MEMORANDUM X-53156

November 2, 1964

A STUDY OF DENSITY VARIATIONS IN FREE MOLE-

CULAR FLOW THROUGH CYLINDRICAL DUCTS DUE

TO ACCOMMODATION COEFFICIENTS

By

S. J. Robertson

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

A theoretical investigation was made of free-mole-

cule flow through a duct of circular cross section. The

molecular flux to the duct wall and exit plane was cal-

culated along with the total flow rate through the duct.

The density field was calculated at the duct exit and

along the centerline forvarious duct wall temperatures

and thermal accommodation coefficients. It was con-

cluded that an experimental determination of the ther-

mal accommodation coefficient can be made by meas-

uring the effect of the duct wall temperature on the

density field.

TECHNICAL MEMORANDUM X-53166

November 27, 1964

GUIDANCE APPLICATIONS OF LINEAR ANALYSIS

By

Lyle R. Dickey

#

Mr. Robertson is associated with the Heat Techno-

logy Laboratory, Inc., Huntsville, Alabama. This

work was performed under NASA Contract NAS8-
11558.

George C. Marshall Space Flight Center

Hhntsville, Alabama

ABSTRACT

The application of linear analysis in determining

a guidance function is investigated. The differential

equations of motion are linearized about a nominal

calculus of variations solution. The result is an ex-

plicitexpression for the cutoff radius error, A r, and

cutoff angle error, A 0, as a linear operation on de-

viations in initial conditions and several nonlinear

functions of thrust angle deviations and thrust accel-

erationdeviations along the trajectory. With this ex-

pression available, a suitable form is selected for a

function to determine thrust angle, X- The coefficients

of this function are mathematically determined from

the explicit solution obtained for A r and A 0 under the

constraint that these values be as near zero as feasible

for deviations in initial conditions and thrust acceler-

ationwhose values are arbitrary within their expected

range of variation.

The results of employing this functionto determine

× for a number of examples are shown. These results

emphasize the advantage of mathematically imposing

the mission criteria in determination of guidance coef-

ficients as well as illustrate the value of linearization

techniques in guidance analysis.

TECHNICAL MEMORANDUM X-53167

November 19, 1964

THE MARTIAN ENVIRONMENT

By

Robert B. Owen

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

An intensive literature survey has been made of

the present consensus on the surface and atmospheric

conditions of Mars. Knowledge of the gross features

of the Martian surface appears to be fairly complete,

but there is sharp disagreement on the atmospheric

conditions. While estimates of the surface tempera-
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• ture are infairly close agreement and estimates of the

surface pressure range from 10 to 150 millibars, other

phenomena such as the blue haze are inexplicable. For-

mal design criteria for entry vehicles canvot yet be

fim_!izedbe_useof+_e_dc _r_e of the environmental

parameter values.

TECHNICAL MEMORANDUM X-53169

November 23, 1964

SA-7 FLIGHT TEST DATA REPORT

By

H. J. Weichel

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report is a presentation of certain flight me-

chanical dataobtainedfromthe SA-7 flight test. Digi-

tized data are presented in graphical form. Also

included are schematic drawings showing the instru-
ment location on the vehicle.

The intention of this report is to present the digi-

tized data in an easy-to-read form for use by design

the Saturn SA-7 Flight Evaluation Report and many

other reports published by the various laboratories.

TECHNICAL MEMORANDUM X-53171

December 1, 1964

SATURN SA-7/BP-15 POSTFLIGHT TRAJECTORY

By

Gerald R. Riddle and Robert H. Benson

George C. Marshall Space Flight Center

Huntsville, Alabama

H series, SA-7 was the second of the Saturn class

vehicles to carry an Apollo boilerplate, BP-!5, pay-

load.. Trajectory dependent parameters are given in

earth-fixed, space-fixed ephemeris, and geographic

coordinate systems. A complete time histo_- of the

powered flight trajectory is presented at 1.0 sec in-

tervals fromS-I S-IV separation to insertion. Tables

of insertion conditions and various orbital parameters

are included in a discussion of the orbital portion of

flight.

TECHNICAL MEMORANDUM X-53176

December 10, 1964

SA-9 PRELIMINARY PREDICTED TRAJECTORY

By

Gerald Wittenstein

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This report presents the preliminary predicted

trajectory for SA-9. The SA-9 vehicle is to be flown

over the Eastern Test Range with a flight azimuth of

105 ° . Also included are a discussion of the vehicle and

_v,vn _uj_uv, v_v, _ _aJ_2¢ _a,_pAn_ _.rtd con-

straints, anda brief description of the vehicle config-

uration. The primary objectives are further flight

testing of the vehicle system and to further man-rate

the Saturn class vehicle. The primary payload, the

Pegasus (Micrometeoroid) satellite, is to obtain in-

formation on micrometeoroids for near-earth orbits.

A depleted S-IV stage and payload, which includes

the Pegasus satellite, are to be inserted in an elliptical,

low-earth orbit, with a perigee altitude of 500 km and

an apogee altitude of 750 kin. The nominal lifetime

for this orbit is welt in excess of one year.

The information contained in this report may be

considered applicable until superseded for SA-8 and

SA-10 flight profiles.

ABSTRACT TECHNICAL MEMORANDUM X-53185

This report presents the postflight trajectory for

theSaturnSA-7/BP-15 test flight. Third of the Block December 22, 1964
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THE GEORGE C. MARSHALL SPACE FLIGHT CEN-

TER'S 14 x 14 INCH TRISONIC WIND TUNNEL

TECHNICAL HANDBOOK

By

Erwin Simon

George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

This handbookis intended to be informative pres-

entation of the George C. Marshall Space Flight Cen-

ter's 14 x 14 inch trisonic tunnel capabilities to the

potential user personnel. The information presented

allows more thorough preliminary test planning to be

carried out.

The following items arepresented to illustrate the

capabilities and operation of the tunnel: (1) facility

description, (2) performance and operational charac-

teristics, (3) model design, (4) instrumentation and

data recording equipment, (5) data processing and

presentation, (6) preliminary test information re-

quired.

TECHNICAL MEMORANDUM X-53186

December 23, 1964

RADIOSONDE AUTOMATIC DATA PROCESSING

SYSTEM

By

Robert E. Turner and Richard A. Jendrek*

George C. Marshall Space Flight Center

Huntsville, Alabama

diosonde data by the described method possesses op-

erational capabilities as demonstrated by more than

300 balloon-borne meteorological soundings from Sep-

tember, 1963 to November 1964.

B. PRESENTATIONS

ALLEVIATION OF AERODYNAMIC LOADS ON

SPACE VEHICLES

By

Mario H. Rheinfurth

The effect of different control modes on the re-

sponse of space vehicles due to basic wind and wind

shear characteristics is analyzed. The equations for

planar rigidbody motion are linearized in space-fixed

and body-fixed coordinate systems and resulting dif-

ferences in stability and response behavior are dis-

cussed. The analysis includes nomograms which allow

the quick determination of gain settings for accelero-

meter-controlledvehicles if the gain values are known

for angle-of-attack control and vice versa. General

design criteria are presented for the prediction of

trends under changes of system parameters and/or in-

put characteristics.

Paper presented July 15-17, 1964

Aerospace Industries Association

New York, N.Y.

A SURVEY OF FREE RETURN TRANSITS IN EARTH-

MOON SPACE

By

A. J. Schwaniger

ABSTRACT

This report describes an operational Automatic

Radiosonde Data Processing System developed for use

with the AN/GMD-2 Rawin Set. The method of reliably

identifying the time-shared temperature, humidity and

reference frequency information from a modified

AN/AMQ-9 Radiosonde is described.

This report shows that automatic reduction of ra-

This paper presents the results of an extensive

survey of free return transits which have properties

that make them suitable for application to lunar ex-

ploration missions. It shows that there is a continuous

region of such transits and notes that there are also

other transits satisfying the definition of free return,

but not in the region of transits of immediate interest

for application.

The method of conducting the survey was numerical
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and experimental. The mathematical model of the re-

" stricted three-body problem was employed, and the

trajectory calculations were done by Cowell's method.

Geometric notions and systematic management of the

transitparameters are used to make the results of the

survey more easily understood and remembered. For

thepurposes of this paper, a free return transit is de-

finedas onewhich starts at a perigee of chosen radius

from the earth's center, passes arbitrarily near the

moon and terminates at another perigee of radius equal
to the first.

Trajectories are characterized by their position

and velocity components at the close approach points

to both earth and moon. The transits are classified by

the direction of departure from earth and the distance

of close approach to the moon.

Presented at the XVth International Astronautical

Congress in Warsaw, Poland, September 1964.

NONLINEAR TWO-DEGREES-OF-FREEIK)M RE-

SPONSE WITH SINUSOIDAL INPUTS

By

Robert S. Ryan

The study of forced vibrational systems is very dif-

ficult if the system is nonlinear. This becomes ap-

parentbecause the principle of superposition does not

hold as it does for linear systems.

In studying the behavior of linear systems, it is

useful todeal with sinusoidal inputs and resulting out-

puts which are harmonic. By definition the complex

ratio of the output to input is called a transfer func-

tion. This transfer function, since it is complex, can

be written as two parts: the modulus and the argument.

The first describes the so-called response curves, and

the second the phase angle between the two harmonic

oscillations. Because of the property of superposition

inherent in linear systems, these transfer functions

become the basis for a complete description of the sys-

tem.

In the nonlinear system, the output of the system

to sinusoidal inputs is no longer sinusoidal, but con-

tains harmonics of both higher and lower frequencies.

Neither does the superposition principle hold; there-

fore, a study using sinusoidal inputs does not yield the

wide scope of information obtained in the linear case.

There are other shortcomings in studying the system

using sinusoidal inputs; nevertheless, the sinusoidal

input functions provide a convenient way of studying the

nonlinear system.

This analysis proposed to solve the nonlinear forced

oscillation of a vehicle using air springs for vibration

isolation. Both a single and a two-degrees-of-freedom

systemwillbe studied where the force applied is con-

sideredto be sinusoidal in nature. The single-degree-

of-freedom system is also solved in the free vibration

state using phase plane methods.

Presented in partial fulfillment for M.S. at Uni-

versity of Alabama, Tuscaloosa, Alabama, on August
21, 1964.

AN ULTRA -LOW FREQUENCY ELECTROMAGNETIC

WAVE FORCE MECHANISM FOR THE IONOSPHERE

By

J. M. Boyer* and W. T. Roberts

Present theoretical explanations of the ionospheric

behavior encounter certain difficulties in accounting

for geographic, diurnal, and seasonalanomalies. Sec-

tion H discusses, in particular, the two nocturnal maxi-

mum electron density concentrations which occur

approximately 12 degrees above andbelow the geomag-

netic equator, their seasonal variation and the sudden

height increases which occur in the F2 layer soon

after twilight. In Section HI a theoretical force mech-

anism for ionospheric matter, originated by J. M.

Boyer, is briefiy described. Such a model uses a me-

chanical potential geometry der_ived from electromag-

netic standing waves generated by Mie scattering o_

ultra-low frequency energy from the sun incident on

the earth. The importance of the 1/o_ 2 dependence of

the time average Lorentz force on charged matter

within such a standing wave gradient is emphasized,

weighing first order effects toward the first few di-

pole/multipole reson_mces of the earth in the region

7.0 to 70.0 cps. Some computer results for plane

wave scattering from the earth in the above spectral

region are displayed to show that the result is the erec-

tionofa complex wave geometry of three-dimensional

potential wells for charged matter. Anomalies in the

standing electromagnetic wave field are found to cor-

respond well with observed ionosphere anomalies in

the F2 region, when translation between the wave co-

ordinate frame and the geographic frame is made.

l

Presented at the Ultra Low Frequency Symposium

in Boulder, Colorado, August 1, 1964.

Principal Investigator, Northrop Space Laborato-

ries, under NASA contract NAS-11138.
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MEASUREMENT OF GAS TEMPERATURE AND THE

RADIATION COMPENSATING THEMOCOUPLE

By

Glenn E. Daniels

THE ALLEVIATION OF AERODYNAMIC LOADS

ON RIGID SPACE VEHICLES

By

Mario H. Rheinfurth

The theory and errors of gas temperature and

measurements are discussed. To achieve a high de-

gree of accuracy in gas temperature measurement, a

method is described whereby several thermocouples

maybe wired together to make the Radiation Compen-

satingThermocouple. This thermocouple is designed

such that the errors of measurement from the radia-

tion environment will cancel out. Results of test, e-

quations, and information are presented to aid in fab-

rication of the Radiation Compensating Thermocouple.

Presented at the National Conference on Micro-

meteorology Sponsored by the American Meterologica[

Society, Salt Lake City, Utah, October 13-16, 1964.

REVIEW OF RANGER 7 PHOTOGRAPHS

By

Otha H. Vaughan, Jr.

A review of the Ranger photographic mission is

presented. Topics discussed are earth-based (Mt.

Wilson photographs) resolution photographs versus

Ranger 7 photographs. Photographs show the areas of

impact prior to the Ranger landing so that one might

compare the difference in details which were obtained

by the Ranger 7. Postulated lunar surface models

(three different types of lunar terrain - volcanic

terrain, meteoroid bombarded terrain, and eompar-

isonofboth volcanic terrain and meteoroid bombarded

terrain} are shown and are to be discussed.

Although the Ranger mission was a success as a

photographic mission, it still leaves many questions

to be answered as to the origin of the moon, as well as

"the lunar bearing strength, which can'be critical for

design of landing vehicles or roving vehicles.

Presented to the Rocket City Astronomical Society,
November 1964.

ABSTRACT

A necessary condition for the successful flight

of a space vehicle through atmospheric disturbances

is to maintain stability at all flight times. It is, how-

ever, equally important to keep the responses within

the design limits of control deflections and structural

loads of the vehicle. The following study demonstrates

how the control systems engineer can assist in this

task by a judicious choice of the control system pa-

rameters. To this effect several typical control modes

(drift-minimum, velocity feedback controk etc. ) are

analyzed for some basic wind profiles. The extent to

which a reduction of aerodynamic loads and control

excursions can be expected is discussed for various

wind, wind shear, and gust conditions. By restricting

the analysis to planar and [inearized motion of the

vehicle, it is possible to derive a set of preliminary

design rules, which allow one to predict the relative

merits of the discussed control principles when system

parameters and/or wind structure are changed, in

addition, the study provides nomograms for the quick

determination of gain settings for accelerometer-con-

trolled vehicles if the gain values are given for angle-
of-attack control and vice versa.

Presented at AIA Dynamics and Aero-elasticity

Research Panel Meeting, July 15-17, 1964, New

York, N. Y.

VARIABLE POROSITY WALLS FOR TRANSONIC

WIND TUNNELS

By

A. Richard Felix

ABSTRACT

Recently variable porosity walls were installed

in the transonic test section of the 14 x 14 inch Tri-

sonic Tunnel at Marshall Space Flight Center. Eval-

uation tests indicated that use of these walls greatly

168



improves the ability of this facility to produce

_reasonably accurate model pressure distribution data

throughout the critical and difficult Mach range from

l. 0 to t.25. The evaluation was accomplished by

comparing pressure distributions for a 20 ° cone-

cylinder model with interference free data for +,he

same model.

between 0.5%

slanted.

The range of porosities utilized is

and 5.4% with the holes being 60 °

Presented at the Supersonic Tunnel Associations'

Mee_ng in Brasscls, P,clgium, September 1964.
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